References

58. Psaltis, D., private communication.


References

References


250 References


Active mode locking, 91, 93, 94
Amplified spontaneous emission, 178
Angled polished optical connectors (APC), 67
Any other type, 136
Attenuation along the laser stripe, 107
Autocorrelation, 16, 90

Babcock spacing, 166
Bandwidth utilization ratio, 168
Base station, 133
BPSK, 101
Broadband cable modem Internet access, 23
Broadband mm-wave optical transmitter, 132
Broad-band mm-wave transmitter, 126
Broadband multi-channel compressed digital video, 130
Buried heterostructure laser on semi-insulating substrate, 30
Buried heterostructure lasers, 14

Carrier freeze-out, 36
Catastrophic damages, 14
Catastrophic failure, 29
Catastrophic mirror damage, 29
CATV, 23
Centralized control, 131
60-channel FP assignment for CTB minimization, 175
80-channel CSO-free system, 174
Classical photon lifetime, 8
CNR optimization, 188
Compliance with FCC, 132
Composite second-order, 201, 203
Composite triple beat, 201
Compounds, 33
Conjugate pole-pair second order low pass filter, 13

Contact mode-locking experiment, 108
Convolution of the spectra, 66
Cross modulation, 201
CSO minimization, 176
CTB minimization, 174

Defense systems, 237
Density of states (DOS), 41
DFB, 65
Differential optical gain, 35, 36
Differential optical gain coefficient, 4, 14
Dimensionless rate equations, 19
Diode-pumped YAG, 66
Direct modulation, 161
Dispersion minimum, 66
Distortions, 19
in directly modulated laser diodes, 19 of EDFA, 184
Distributed circuit model, 110
Dopants, 36
Double Rayleigh backscattering, 70
Dynamic longitudinal-mode spectral behavior, 45
Dynamic range, 135
Dynamic range measurements, 103
Dynamic wavelength “chirping”, 61

EDFA distortion model, 178
Electroabsorption modulator, 213
Electro-absorption optical modulator, 215
Electronic counter measure, 237
Elimination of fiber chromatic dispersion penalty, 120
End mirror reflectivities, 8
Energy level diagram of Erbium, 178
Erbium fiber amplifiers, 177
Erbium fiber amplifiers in linear lightwave transmission, 177
External optical cavity, 87
Externally modulated diode-pumped YAG, 66

Fabry-Perot (FP) lasers, 65, 66
Feed point, 108
Feed-forward modulation, 155
Feed-forward modulation of digitally
modulated mm-wave subcarrier, 161
Fiber chromatic dispersion, 115
Fiber chromatic dispersion effects on multi-
tchannel digital millimeter-wave
transmission, 125
Fiber-fed distributed antenna network, 135, 136
Fiber-optic towed decoy, 238
FM/IM ratio, 40
Fractional modal intensities, 50
Frequency planning, 165
multi-link
algorithm, 170
insertion and deletion, 172
modified Okinaka Algorithm, 171
Frequency response, 12
Frequency selectivity, 46

Gain coefficient, 4
Golomb’s ruler, 167

Harmonic distortions, 19, 22
High frequency optical modulators, 213
High optical power density, 29
High-speed optical modulator, 126
Homogeneous bias, 103
Hybrid fiber coaxial (HFC) cable plant, 23

IM product, 24
Inhomogeneous modulation, 107
Inhomogeneous pumping, 97
Interferometric noise, 80, 141, 142
Interferometric phase-to-intensity conversion, 141
Interferometric phase→intensity converted
noise, 70
Intermodulation distortion, 22
Intermodulation powers, 127
Internal photon density, 29
Intracavity saturable absorber, 97
Intrinsic differential optical gain of GaAs, 36
Intrinsic Rayleigh backscattering, 67

Ku band, 91

Large optical cavity, 29
Laser diode dynamics, 3
Laser rate equations, 3
Lasing threshold current, 11
Linearization analytic procedure, 12
Local photon number densities, 4
Local rate equations, 3
steady state solution of, 4
Lorentzian, 67
Lower dimensional material, 41
Low-frequency noise, 66
Low temperatures, 17, 35
Low-temperature operation, 35

Mach Zenhder interferometric optical
modulator, 214
Mach Zenhder modulator, 213
Matching circuit, 101
Maximum C/I protocol, 139
Maximum signal protocol, 139
Microcell, 136
Microstrip matching circuit, 101
Microwave probe, 108
Millimeter-wave fiber-wireless digital video
system, 133
Millimeter-wave (mm-wave) subcarriers, 101
Minimum length Golomb’s ruler, 167
Mm-wave fiber-wireless link, 132
Mm-wave matching circuit, 102
Mode locking, 87
Mode selectivity, 46
Mode-hopping noise, 66
Mode-partitioning, 65
Mode-partition noise, 66, 67, 74, 82
Modulation efficiency, 91
Multi-link frequency planning, 170
Multi-subcarrier modulation, 101
Multichannel digital millimeter-wave
transmission, 115
Multichannel digital transmission, 101
Multichannel frequency division multiplexed, 22
Multichannel mm-wave signals, 115
Multichannel signal transmission systems, 23
Multiple back reflections from imperfect
connectors or splices, 65

Narrowband resonant enhancement, 161
Narrowband signal transmitters, 87, 91
Index

Nevada test site, 240
Noise suppression factor, 80
Noise transposition factor, 76
Non-absorbing window, 14
Nonlinear clipping, 176
Nuclear test diagnostic instrumentation, 238

Okinaka’s algorithm, 168
On mm-wave subcarriers, 115
Optical feedback, 91
Optical modulation depth, 49, 50
Optoelectronic feedback, 66
Output optical power density, 29
Overall modulation response, 96

Parabolic gain profile, 95
Parametric dependence of distortion level (in EDFA), 183
Parasitic capacitance, 15
Parasitic-free photo mixing modulation, 38
Partial modulation, 107
Partial modulation of laser cavity, 108
Passive mode-locking, 94, 97
Passively mode-locked laser, 99
Passively mode-locked laser diode at ~350 GHz, 99
Perturbation analysis, 19
Perturbation analytic prediction of Fundamental distortions, 19
Phased-array antennas, 229
Phase noise to intensity noise, 67
Phase-to-intensity noise, 65
Photodiodes, 15, 207, 208
Photomixing, 155
pin-FET optical receiver, 211

Quantum confined and strained layer lasers, 38
Quantum-confined lasers, 44
Quantum-confined media, 22, 39
Quantum confined medium, 40
Quantum-confined Materials, 40
Quantum confinement, 35
Quantum dot, 41
Quantum well, 41
Quantum wire, 41
Quasi-steady state, 23

Radio microcells, 135
Rayleigh backscattering, 65

Receivers, 207
Relative excess noise, 194
Relaxation oscillation, 13
Relaxation oscillation frequency, 24
Relaxation resonance, 36
Resonance peak, 13
Resonant modulation, 87, 93, 101, 107
monolithic laser diode, 93
of single-contact lasers, 107
Resonant receivers, 211
Retro-reflections along fiber link, 65
RIN, 65, 67
Round-trip frequency, 87, 88

Schottky photodiode, 208
Second harmonic, 25
Sedan crater, 240
Series resistance of laser, 36
Short-cavity BH on SI lasers, 17
Short-cavity laser, 14
Signal processing worksystem simulation tool, 116
Signal-induced RIN, 81
Signal-induced noise, 65, 66
Single-contact lasers, 107
Single contact mode-locking, 108
Single-link frequency planning, 166
Small signal analysis, 11, 12
Small-signal modulation response, 11
Small signal superluminescent equations, 220
Small signal traveling wave rate equations for erbium-doped fiber amplifiers, 235
Spatially averaged rate equations, 3, 5, 7, 11
Spectrum at 39 GHz, 133
Split(multi)-contact laser diodes, 107
Spur-free, 135
Spur (Spurious)-free dynamic range (SFDR), 199
Standard single contact monolithic laser, 107
Steady state photon and electron density distributions, 6
Stimulated emission, 12
Strained layer, 22
Strained-layer medium, 39
Streak camera, 109
Superluminescent damping effect, 33
Superluminescent lasers, 219
Superposition of high-frequency microwave modulation, 141
Synchroscan mode, 109
Telecommunication lasers, 33
Third order intermodulation distortion, 23
Transmission demonstrations, 125
Transmission of digitally modulated 28-GHz subcarriers, 125
Transparent window, 29
Transposed interferometric noise, 72, 78
Transposed mode-partition noise, 72
Traveling wave electrode structures, 214
Two-level system, 178

Ultra-high speed PIN photodiodes, 207
Using different pump configurations, 184
Window buried heterostructure laser, 29
Window buried heterostructure laser on a semi-insulating substrate, 30, 32
Wireless microcell, 136
Wireless signal distribution, 135
Worst case CTB, 168