Index

Achondrites, 9
Accretion process, 8-11, 46-55
Agglutinates, 65, 67, 72
Alkali basalt, 68-76
Anomalies, 2-5
Anorthosite, 68-76
Asteroid belt, 18-19
Asteroid impact, 53
Atmosphere concept, 7, 14-16
Atmosphere/magnetosphere interaction, 14-17, 170-174
Atmosphere/surface interaction, 13-15, 119-130
Atmosphere comparisons, 15
Atmosphere formation, 14-15
Atmosphere pre-Mariner 11, 14-15, 107-108
Atmosphere Mariner 11, 14-15, 108-109
Atmospheric calcium, 115-116
Atmospheric constituents, 109-111
Atmospheric particle trajectories, 111-128
Atmospheric potassium, 116-119
Atmospheric sodium, 116-119
Atmosphere sources and sinks, 14-15, 119-128
Aurora, 139, 163-167
Basins, 79-91
BepiColombo mission, 30-36
BepiColombo objectives, 33-35
BepiColombo payload, 30-32
BepiColombo spacecraft, 30-32
Bow shock, 15-17
Basalt, 90-92
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowen’s reaction series</td>
<td>14</td>
</tr>
<tr>
<td>Breccia</td>
<td>9</td>
</tr>
<tr>
<td>Bulk properties</td>
<td>8-11</td>
</tr>
<tr>
<td>Bulk surface composition</td>
<td>68-76</td>
</tr>
<tr>
<td>C/mr²</td>
<td>45-46</td>
</tr>
<tr>
<td>Calorlan period</td>
<td>79-90</td>
</tr>
<tr>
<td>Caloris</td>
<td>77-92</td>
</tr>
<tr>
<td>Catastrophic systems</td>
<td>5-8</td>
</tr>
<tr>
<td>Chemical sputtering</td>
<td>111-131</td>
</tr>
<tr>
<td>Cold traps</td>
<td>96-99</td>
</tr>
<tr>
<td>Cold traps</td>
<td>120-131</td>
</tr>
<tr>
<td>Crater density age</td>
<td>82-90</td>
</tr>
<tr>
<td>Cratering</td>
<td>82-90</td>
</tr>
<tr>
<td>Chondrites</td>
<td>9, 46-55</td>
</tr>
<tr>
<td>Chondrules</td>
<td>9</td>
</tr>
<tr>
<td>Chronology</td>
<td>79-90</td>
</tr>
<tr>
<td>Comet impact</td>
<td>53</td>
</tr>
<tr>
<td>Composition of the regolith</td>
<td>68-77</td>
</tr>
<tr>
<td>Composition of major terranes</td>
<td>77-79</td>
</tr>
<tr>
<td>Conducting photosheath</td>
<td>176</td>
</tr>
<tr>
<td>Core formation</td>
<td>11, 38-46</td>
</tr>
<tr>
<td>Core structure</td>
<td>11, 38-46</td>
</tr>
<tr>
<td>Coronal mass ejections</td>
<td>178</td>
</tr>
<tr>
<td>Co-rotating electric field</td>
<td>153-155</td>
</tr>
<tr>
<td>Crustal expansion</td>
<td>79-82</td>
</tr>
<tr>
<td>Crust formation</td>
<td>11-13</td>
</tr>
<tr>
<td>Crustal shrinking</td>
<td>79-82</td>
</tr>
<tr>
<td>Cyclical systems</td>
<td>5-8</td>
</tr>
<tr>
<td>Differentiation</td>
<td>11-14</td>
</tr>
<tr>
<td>Diffusion</td>
<td>11-128</td>
</tr>
<tr>
<td>Direct injection</td>
<td>120</td>
</tr>
<tr>
<td>Dusk/Dawn variations</td>
<td>111-131</td>
</tr>
<tr>
<td>Dynamic systems</td>
<td>5-8</td>
</tr>
<tr>
<td>Dynamo</td>
<td>5, 17, 37-42</td>
</tr>
<tr>
<td>Earliest observations</td>
<td>1-5</td>
</tr>
<tr>
<td>East/West asymmetry</td>
<td>61-63</td>
</tr>
<tr>
<td>Electron bursts</td>
<td>156-161</td>
</tr>
<tr>
<td>Electron stimulated desorption</td>
<td>119-131</td>
</tr>
<tr>
<td>Emissivity</td>
<td>64-68</td>
</tr>
<tr>
<td>Energetic neutral atom imaging</td>
<td>128-131</td>
</tr>
<tr>
<td>Energetic particles</td>
<td>157-176</td>
</tr>
<tr>
<td>Enstatite chondrite composition</td>
<td>46-55</td>
</tr>
<tr>
<td>Equilibrium systems</td>
<td>5-11</td>
</tr>
<tr>
<td>Equilibrium condensation model</td>
<td>8-13, 46-55</td>
</tr>
<tr>
<td>Evolutionary systems</td>
<td>5-8</td>
</tr>
</tbody>
</table>
Index

Exobase concept, 107-108
Exoionosphere, 128
Exosphere/magnetosphere interaction, 14-17, 170-174
Exosphere concept, 7, 14-16, 107-108
Exosphere post-Mariner, 109-131
Field aligned current, 164-170
Flux transfer event, 142
Flux tubes, 160-178
Future exosphere investigations, 194-197
Future interior investigations, 185-189
Future magnetosphere investigations, 197-201
Future Mercury missions, 201-208
Future surface investigations, 189-194
Formation models, 8-13, 46-55
Geological history summary, 80-82
Giant impact model, 51-53
Gravity field, 44
Ground-based observations, 1-5
Heavily cratered terrain, 77-82
High abundance of iron, 10-13, 46-55
High latitude enhancement, 112-131
Hilly and lineated terrain, 82-90
History of early astronomy, 1-5
Ice on Mercury, 95-99
Induced magnetosphere, 179
Impact activity, 82-90
Impact cratering, 82-90
Impact vaporization, 51-53
Infall of cometary/asteroid materials, 53
Infrared spectra, 68-76
Intercrater plains, 77-82, 90-96
Interior, 13-15, 37-56
Interior formation, 13-15, 46-55
Internal structure, 13-14, 37-46
Interplanetary magnetic field, 139, 145, 147, 159, 168, 181
Intrinsic magnetic field, 148, 181
Ionsphere, 15-17, 128
Ion sputtering, 119-131
Iron metal, 8-12, 49
Iron-bearing silicate, 10-13
Kuiperian period, 79-90
LBO, 70
Late heavy bombardment, 82-90
Lineament analysis, 92-96
Line-tying, 164-170
Liquid core/shell, 44-46
Liouville’s theorem, 174
LUGH, 201-208
Magma ocean, 12-14
Magnetic field, 15-17, 38-43, 148
Magnetic field depolarization event, 160-166
Magnetic flux, 158-166-169
Magnetopause concept, 15-17
Magnetosphere concept, 15-17
Magnetosphere comparison to Earth, 152-157
Magnetosphere/exosphere interaction, 15-17, 170-174
Magnetosphere/solar wind interaction, 15-17, 147, 157-174
Magnetosphere/surface interaction, 15-17, 174
Magnetosphere boundaries, 15-17, 140-148, 152-154
Magnetosphere comparisons, 16
Magnetosphere dynamics, 157-163
Magnetosphere formation, 15-17
Magnetosphere Mariner 10 models, 139-155
Magnetosphere mHD Model, 166, 174-179
Magnetosphere neutral hybrid model, 166, 174-179
Magnetosphere structure, 152-157
Magnetosphere Toffoletto-Hill model, 166, 174-179
Magnetotail, 15-17, 139-143, 152-155, 157-158
Major terranes, 77-82
Mansurian period, 79-90
Mantle formation, 12-14, 37-46
Mantle libration, 44-46
Mariner 10 mission, 20-26
Mariner 10 objectives, 26
Mariner 10 science overview, 20, 24-26
Mariner 10 payload, 23-24
Mariner 10 spacecraft, 22-24
Mariner 10 trajectories, 141-148
Mass of Mercury, 1-3, 37-55
Maturity, 76-77
Maxwell-Boltzmann distribution for atmosphere, 109, 120, 124
Mercury express mission, 201-208
MESSENGER mission, 26-30
MESSENGER objectives, 30
MESSENGER payload, 28-30
Mesenger Spacecraft, 28-30
Metal fractionation, 8-13, 37-55
Micrometeorite impact, 76-77, 128-130
Mineralogy, 68-77
Minnaert maps, 68
Morphology, 61-99
Multi-platform mission to Mercury, 193-200
Multi-ring basins, 77-90
Near Earth neutral line, 158-166
Noble gases, 8-11, 107-111
Non-stoichiometric atmospheric processes, 119-128
North/south asymmetry, 61-63
Nusselt number, 11
Optical properties of planet, 1-2
Optical properties of regolith, 65-77
Orbital properties of planet, 1-2
Outgassing, 14-15, 107-111
Parker spiral, 179
Particle bursts, 157-163
Phases of mercury, 1
Photo-emission, 119-128
Photo-ionization, 119-128
Photo-sputtering, 119-128
Photon stimulated desorption, 119-128
Physical properties of planet, 1-2
Physical properties of regolith, 65-77
Planetary formation, 9-13
Planetesimals, 8-13
Planetoids, 8-13
Plasma observations, 139-140, 146-166, 168, 171-174
Plasma sheet, 139-140, 146, 166, 168, 171-174
Plasmasphere, 152, 171-174
Polar features, 96-100
Post-accretion vaporization, 46-55
Pre-Tolstoyan period, 79-90
Primordial atmospheres, 8-15
Provenance, 46-55
Recalibrated Mariner 10 color images, 69-71
Reconnection, 15-17, 142, 147, 157-160, 166-168, 171, 174-175
Recycling, 128-131
Redness of surface, 65-77
Refractory components, 8-15, 46-55
Regolith, 64-77
Regolith thermal properties, 64-68
Ridges and troughs, 92-96
Rotation, 2-5
Safranov model, 8-13
Scaling of Mercury’s magnetosphere to earth’s, 152-157
Scarps arcuate, 92-96
Scarps lobate, 93-96
Second degree gravity coefficients, 44-46
Selective accretion model, 46-55
Shape of Mercury, 42-46
Smooth plains, 77-82, 90-92
Sodium bright spots, 111-128
Sodium emission, 111-128
Sodium tail, 115
Solar nebula, 8-13
Solar system formation, 8-13
Solar wind, 8, 15-17, 145-155, 161-179
Solar wind implantation, 107-109
Solar wind stand-off distance, 154, 167-168
Space weathering as atmosphere modification process, 128-131
Space weathering as surface modification process, 77-78
Spin:Orbit coupling, 3-4
States of matter, 7
Steady state systems, 6-7
Stratigraphy, 80-90
Substorm activity, 139, 163-164
Substorm current wedge, 157-170
Sulfur, 37-55
Surface, 61-99
Surface/Atmosphere interaction, 13-15, 128-131
Surface/Magnetosphere interaction, 13-17, 172-174
Surface backscatter, 65-68
Surface formation, 12-14
Surface roughness, 61-68
System of systems, 6-8
System types, 6
T Tauri phase, 8-13
Tectonic activity, 92-96
Temperature variations, 3-5
Thermal models, 37-46
Thermoelectric dynamo, 37-46
Tidal despinning, 92-96
Tidal heating, 92-96
Tolstajan period, 80-90
Topography, 61-68
Ulf oscillations, 150-152
Ultrabasic composition, 68-76
Index

Unimaged hemisphere, 61-68
Van Allen belts, 152
Volatile components, 8-15
Volcanism, 90-92
Vulcanoids, 86
COLOR PLATES
Figure 5-3.

Figure 5-5.
Figure 6-12.

Figure 6-13.
Color Plate 4

Figure 6-17.

Figure 6-18.
Figure 6-23.