Search for the pentaquark candidate $\Theta(1540)^+$ in the hyperon beam experiment WA89

M.I. Adamovich,1,2 Yu.A. Alexandrov,1,2 S.P. Baranov,1,2 D. Barberis,2 M. Beck,3 C. Bérat,4 W. Beusch,5 M. Boss,6 S. Brons,3,4 W. Brückner,3 M. Buénerd,4 C. Busch,6 C. Büscher,3 F. Charignon,4 J. Chauvin,4 E.A. Chudakov,5,6 U. Dersch,3 F. Dropmann,6 J. Engelried,6,7 F. Faller,6,7 A. Fournier,4 S.G. Gerassimov,3,1,8 M. Godbersen,9 P. Graffström,5 Th. Haller,3 M. Heidrich,5 E. Hubbard,3 R.B. Hurst,2 K. Königsmann,3,11 I. Konorov,3,11 N. Keller,6,7 A. Simon,6,8 V.J. Smith,8 O. Thilmann,6 A. Trombini,3 E. Vesin,4 B. Volkemer,7 K. Vorwalter,3 Th. Walcher,7 G. Wälder,6 R. Werding,3 E. Wittmann,3 and M.V. Zavertyaev1,9

(WA89 collaboration)

1Moscow Lebedev Physics Institute, RU-117924, Moscow, Russia
2Genoa University/INFN, Dipartimento di Fisica, I-16146 Genova, Italy
3Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany
4Grenoble I3N, F-38026 Grenoble, France
5CERN, CH-1211 Genève 23, Switzerland
6Universität Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany
7Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
8University of Bristol, Bristol, United Kingdom
9University of Iowa, Iowa City, IA 52242, USA
10Rutgers University, Piscataway, New Jersey 08854, USA
11NIKHEF, 1009 D8 Amsterdam, The Netherlands

(Dated: October 6, 2005)

We report on a high-statistics search for the $\Theta(1540)^+$ resonance in Σ^--nucleus collisions at 340 GeV/c. No evidence for this resonance was found in our data sample which contains 13 millions of $K^0_S \rightarrow \pi^+\pi^-$ decays above background. For the decay channel $\Theta^+ \rightarrow K^0_S p$ and the kinematic range $x_F > 0.05$ we find the production cross section to be $BR(\Theta^+ \rightarrow K^0_S p) \cdot \sigma_0 < 1.8\, \text{mb per nucleon at 90\% CL.}$

PACS numbers: 13.85.-t, 13.85.Rm, 25.80.Pw

During the last years twelve experimental groups have reported evidence for a narrow baryonic resonance in the KN channel at a mass of about 1540 MeV/c2. While the number of positive observations seems to be quite convincing, when plotting the data points with error bars but without background curves to guide the eye it becomes obvious that the limited statistics is a common drawback of the individual observations. It is remarkable that the event statistics is nearly independent of the experimental situation and it is disturbing that the peak positions differ significantly in the various experiments. On the other hand at least 11 experiments have reported negative search results.

*Supported by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Germany, under contract numbers 05HD515I and 06HD524I.

*Supported by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Germany, under contract number 06MZ5265 and 06MZ177.
The hyperon beamline selected negatively charged particles with a mean momentum of 340 GeV/c and a momentum spread of σ(p)/p = 9%. At the experimental target, the π− to Σ− ratio of the beam was about 2.3. The beam pions were strongly suppressed at the trigger level by a set of transition radiation detectors resulting in a remaining pion contamination of about 12%. In addition the beam contained small admixtures of K− and Ξ−. The experimental target itself consisted of one copper slab with a thickness of 0.025 λI in beam direction, followed by three carbon (diamond powder) slabs of 0.008 λI each. The trajectories of incoming and outgoing particles were measured in silicon microstrip detectors upstream and downstream of the targets. Only events with a reconstructed interaction vertex in the targets and the surrounding counters were retained in the analysis.

The momenta of charged particles were measured in a magnetic spectrometer equipped with MWPCs and drift chambers. The spectrometer magnet was placed with its center 13.6 m downstream of the target, thus providing a field-free decay zone of about 10 m length for hyperons and K0 candidates with a reconstructed mass within ±2σm(Λ) of the Λ effective mass σm(Λ) was 1.8 MeV/c^2 at low momenta and 2.8 MeV/c^2 at 200 GeV/c. This requirement reduced the K0 sample by 3% and the background by 1/3.

A ring-imaging Cherenkov counter placed downstream of the spectrometer magnet provided particle identification. It was followed by a leadglass electromagnetic calorimeter and an iron/scintillator hadron calorimeter, which were not used in this analysis.

K0s were reconstructed in the decay K0s → π+π−, using all pairs of positive and negative particles which formed a decay vertex in the decay zone. Λ → pπ− decays with decay particle momenta corresponding to K0s → π+π− decays can produce a spurious mass peak at 1540 MeV/c^2, if a mirror image of the decay proton is used in the search for K0s decays. To avoid this, we excluded K0s candidates with a reconstructed pπ− mass within ±2σm(Λ) of the Λ mass σm(Λ) was 1.8 MeV/c^2 at low momenta and 2.8 MeV/c^2 at 200 GeV/c. This requirement reduced the K0 sample by 3% and the background by 1/3.

The reconstructed π+π− mass distribution of the remaining K0s candidates is shown in fig. 2. The peak from K0s decays contains about 13 million events, their momentum spectrum extends from 10 GeV/c to about 200 GeV/c. Above this momentum, very few K0s are left, and they do not contribute to K0s effective masses below 1570 MeV/c^2. The mass resolution is σm(K0s) = 4 MeV/c^2 at low momenta and increases to σm(K0s) = 7 MeV/c^2 at 200 GeV/c. Candidates with a reconstructed π+π− mass within ±2σm of the K0s mass were retained for further analysis.

All positive particles with a reconstructed track extending from the microstrip counters downstream of the target to the wire chambers beyond the spectrometer were considered as proton candidates, excluding of course the π+ from the K0s decay. Requiring track reconstruction in the microstrip counters rejected most of the pro-
tons from Λ decays. The track had to be inside the acceptance of the RICH counter, which implies a momentum threshold of around 12 GeV/c. Since the proton threshold of the RICH was at 38 GeV/c we did not require proton identification, but rejected clearly identified π⁺ and K⁺ (thresholds at 5.5 and 20 GeV/c, resp.). From a study of reconstructed Λ decays, we determined that this requirement rejected 4% or less of genuine protons at all momenta, while the Κ⁰_s candidate sample was reduced by a factor of 3.

The final Κ⁰_s sample contained 5.2 million Κ⁰_s candidates. Fig. 2 shows the Κ⁰_s mass distribution of all candidates up to 2 GeV. No narrow signal is visible in this plot, neither did we see narrow signals around an invariant mass of 1540 MeV/c² in subsamples of x_F or transverse momentum p_t [32]. We define x_F as x_F = 2p_t L/c, where p_L is the Κ⁰_s momentum component in beam direction in the beam-nucleon CMS and c is the invariant mass of the beam-nucleon system. In our case, c = 25.2 GeV. The x_F distribution is shown in fig. 4 for the Κ⁰_s mass region between 1500 and 1560 MeV/c², it starts at x_F = 0.05 and thus covers part of the central production region.

Upper limits on the Θ⁺ production cross sections were calculated separately for the copper and carbon targets, in bins of x_F as listed in col. 1 of Table II. We used four mass windows of 20 MeV/c² width, centered at 1520, 1530, 1540 and 1550 MeV/c², resp., for i = 1, 2, 3, 4, thus covering the full range of reported values for the Θ⁺ mass. The width was chosen taking into account our mass resolution, σ_E(Κ⁰_s) = 4 MeV/c², and the reported values for the intrinsic width of the Θ⁺. The observed number of Κ⁰_s combinations in each mass window is n_i. From a fit to the observed Κ⁰_s mass spectrum between 1460 and 1700 MeV/c² we calculated the expected non-resonant backgrounds b_i. Upper limits n_max on the number of Θ⁺ → Κ⁰_s decays were then obtained by the formula n_max = n_i · (max(0, n_i - b_i)) + 3√b_i and are listed in columns 2 and 5 of Tab. II. These limits have a confidence level of 99% and scale approximately with the square root of the width of the search window.

Upper limits on the product of BR, the Θ(1540)⁺ → Κ⁰_s decay branching ratio, and the differential production cross sections dσ/dx_F per nucleus are given in columns 3 and 6 of Tab. II. Assuming the dependence of the cross section on the mass number to be σ_A ∝ A²/³, where σ_0 is the cross section per nucleon, we finally obtained the limits on BR · dσ_0/dx_F in columns 4 and 7 of the table.

Limits on the integrated production cross sections σ were calculated by summing quadratically the contributions (dσ/dx_F) · δx_F in the nine individual x_F bins. The results are BR · σ_A(x_F > 0.05) < 38 and <15 μb per nucleus for the copper and carbon target, respectively. An extrapolation to the cross sections per nucleon yields the two values BR · σ_0(x_F > 0.05) < 2.4 and < 2.9 μb per nucleon. Since these are statistically independent upper limits, we can combine them to obtain BR · σ_0 < 1.8 μb per nucleon for Θ(1540)⁺ production by Σ⁻ of 340 GeV/c in the region x_F > 0.05.
For a comparison of our result to observations of or searches for the $\Theta(1540)^+$ we concentrate on hadronic reactions. It is interesting to note that all these experiments investigated the K^+p decay channel, but only the SPHINX experiment searched in the K^+n decay channel as well. Four experiments have reported observations of the $\Theta(1540)^+$ \cite{et-al1,et-al2,et-al3,et-al4}. The COSY-TOF collaboration using a proton beam of 2.95 GeV/c and a liquid hydrogen target, has measured a cross section $\sigma_0 = 0.4 \mu b$ per nucleon for exclusive production in the reaction $pp \rightarrow \Sigma^+(K^0p)$ \cite{et-al1}. This value is below our upper limit, but an exclusive production cross section that close to the reaction threshold cannot be compared to inclusive production cross sections at energies of several hundred GeV. The JINR propane bubble chamber group using a proton beam of 10 GeV/c has measured a total production cross section $\sigma_{propane} = 90 \mu b$ \cite{et-al2}. Again assuming a dependence of the cross section on the mass number as $\sigma_A \propto \sigma_0 A^{2/3}$, one obtains a production cross section $\sigma_0 = 3.8 \mu b$ per nucleon, which is larger by a factor of 2 than our limit. The SVD Collaboration using a proton beam of 70 GeV/c and a combined carbon, silicon and lead target, has measured a production cross section $\sigma_0 = 30-120 \mu b$ per nucleon for $x_F > 0$ \cite{et-al3}. This is much higher than our upper limit in practically the same kinematic range. The DIANA collaboration using a K^+ beam of 0.85 GeV/c and a Xenon bubble chamber has not measured a cross section \cite{et-al4}. Negative search results were reported from at least 11 experiments \cite{et-al5,et-al6,et-al7,et-al8,et-al9,et-al10,et-al11,et-al12,et-al13,et-al14,et-al15,et-al16}. Out of these 6 experiments studied hadronic induced interactions \cite{et-al17,et-al18,et-al19,et-al20,et-al21,et-al22,et-al23}. Usually these collaborations have compared their Θ^+ production limits with their $\Lambda(1520)$ observations, and have obtained limits below 3% on the event or production ratio of $\Theta(1540)^+$ w.r.t. $\Lambda(1520)$. This we cannot do, although we do observe $\Lambda(1520)$ decays, because in our experiment two-body decay channels were suppressed in the trigger. We can, however, compare our result to the HERA-B result of $BR \cdot d\sigma/dy < 4 - 16 \mu b$ per nucleon at 95% CL for Θ^+ masses between 1521 and 1555 MeV/c2, at rapidity $y_{cm} \approx 0$. This value corresponds to $BR \cdot d\sigma/dx_F < 30 - 120 \mu b$ per nucleon, to be compared to our result $BR\cdot d\sigma/dx_F < 12 \mu b$ at 99% CL and for $0.05 < x_F < 0.15$ (this limit was obtained by combining the statistically independent carbon and copper target results).

If the $\Theta(1540)^+$ exists, as many experiments suggest, then the cross sections for Θ^+ production in hadronic reactions at higher energies are surprisingly low compared to the production of hyperon resonances. This fact by itself could provide important information on the nature of the $\Theta(1540)^+$.

<table>
<thead>
<tr>
<th>x_F</th>
<th>copper target</th>
<th>carbon target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>η_{max}</td>
<td>η_{max}</td>
</tr>
<tr>
<td></td>
<td>$BR \cdot d\sigma/dx_F \ [\mu b]$</td>
<td>$d\sigma/dx_F \ [\mu b]$</td>
</tr>
<tr>
<td></td>
<td>σ_A</td>
<td>σ_A</td>
</tr>
<tr>
<td>0.05 - 0.15</td>
<td>520</td>
<td>230</td>
</tr>
<tr>
<td>0.15 - 0.25</td>
<td>500</td>
<td>205</td>
</tr>
<tr>
<td>0.25 - 0.35</td>
<td>340</td>
<td>140</td>
</tr>
<tr>
<td>0.35 - 0.45</td>
<td>390</td>
<td>140</td>
</tr>
<tr>
<td>0.45 - 0.55</td>
<td>290</td>
<td>65</td>
</tr>
<tr>
<td>0.55 - 0.65</td>
<td>190</td>
<td>53</td>
</tr>
<tr>
<td>0.65 - 0.75</td>
<td>115</td>
<td>33</td>
</tr>
<tr>
<td>0.75 - 0.85</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>> 0.85</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>σ_0</td>
<td>38</td>
<td>2.4</td>
</tr>
</tbody>
</table>

TABLE I: Upper limits on yields and cross sections. BR denotes the $\Theta(1540)^+ \rightarrow K^0p$ decay branching ratio. σ_A and σ_0 denote cross sections per nucleus and per nucleon, respectively.
[32] At large $x_F > 0.8$ we do however observe a broad ($\Gamma \simeq 90 \text{ MeV}/c^2$) resonance like structure at a mass of $\simeq 1750 \text{ MeV}/c^2$ which is possibly related to known Σ^* resonances. A detailed analysis of this structure will be presented in a future paper.