THE 1^- STATE AND ψ SPECTROSCOPY

Gino Segré *) and Jacques Wayers
CERN - Geneva

ABSTRACT

We suggest that $\psi' \rightarrow \psi_H \eta^0$ (where the ψ_H is the 1^- state) may be an important decay mode of the $\psi'(3685)$ and $\psi'' \rightarrow \psi_H \eta$ of the $\psi''(4414)$. We also discuss ways to test the magnitude of the $\eta - \eta^0$ transition in the ψ system.

*) J.S. Guggenheim Foundation Fellow, on leave from the University of Pennsylvania, Philadelphia, PA.

Ref.TH.2143-CERN
9 March 1976
There seems to be a puzzle in accounting for the decays of the $\psi'(3685)$ \(^1\). Approximately 57\% of the decays are to $\psi(3095)$+ anything. Taking the total width as 220 keV \(^2\) (it is 220 ± 56 keV) leave approximately 90 keV to be explained, of which about five are the e^+e^- and $\mu^+\mu^-$ final states. It seems that the hadronic decay modes of the ψ' give a $\Gamma_{\psi'}$ hadronic less than half of Γ_{ψ} hadronic; this then gives us another ~ 30 keV and we are left with ~ 55 keV still to be explained. This is the puzzle: where are the remaining decays? The limits on photon transitions of the ψ' suggest it is not $\pi^0 + \gamma$ states \(^3\),\(^4\), though this issue is still not settled. Decays involving the η_c \(^5\) such as an $\eta_c\pi^0$ final state do not appear sufficient either \(^6\).

In this note we would like to suggest a completely different mechanism which seems capable of resolving the puzzle of the missing ψ' decays. It involves decays to a final 1P_1 state $J^{PC} = 1^{+-}$, which we label ψ_H in analogy to the ϕ meson in the conventional quark model. No such state has been seen as of yet, but we believe that whatever the explanation of the ψ, ψ', $\pi^0\gamma$ states is, the evidence is strong for it having the nature of fermion-anti-fermion bound states and hence the ψ_H should exist. A first guess for the value of its mass would place it in the 3400-3500 MeV region with the other π^0 states, but the apparent strong spin-spin forces which lead to the η_c (3S_1) being ~ 300 MeV lower \(^5\) than the ψ' probably lead to the ψ_H having a lower mass. The actual value is not crucial to our calculation; for argument's sake we take it to be 3300 MeV.

The mechanism we suggest for the missing ψ' decays is that the ψ' decays into a ψ_H plus a virtual η or η' which then converts electromagnetically or otherwise into a π^0

$$\psi' \rightarrow \psi_H + \pi^0 (\eta, \eta') \quad (1)$$

At first sight one would imagine this to be hopelessly small because of the virtual electromagnetic transition but two factors are at work:

1) it is a two-body S wave decay, whereas competing mechanisms involve either P waves ($\psi\eta$) or three-body phase space ($\psi\pi\pi$);

2) the $\eta\pi^0$ transition is probably anomalously large, in fact many \(^7\)-\(^13\) authors believe there is strong evidence for a non-electromagnetic isospin violating term in the interaction Hamiltonian.
We need to know the magnitude of the $\eta(\eta') - \pi^0$ transition. If we take this as due to an isospin violating scalar density interaction term, $\varepsilon_3 u_3$, we have the parameter

$$\frac{\langle \eta(\eta') | \varepsilon_3 u_3 | \pi^0 \rangle}{m_{\eta}^2 - m_{\pi^0}^2} = \lambda_{\eta}$$

A reasonable estimate \(^7\)-\(^{13}\) is that $0.02 \leq \lambda_{\eta} \leq 0.05$. We expect λ_{η} to be somewhat smaller since $m_{\eta'} = 3 m_{\eta}$.

The decay width for $\psi' - \psi_H^0$ is

$$\Gamma_{\psi' \rightarrow \psi_H^0 \pi^0(\eta')} = \frac{1}{2} \frac{g_1^2}{4\pi} \frac{\lambda_{\eta}^2}{2} \left(1 + \frac{P_3}{3 M_{\psi_H^0}}\right) \frac{P_H}{M_{\psi'}} M_{\psi'}$$

as contrasted to the $\psi' - \psi$ width

$$\Gamma_{\psi' \rightarrow \psi_H^0 \pi^0(\eta')} = \frac{1}{3} \frac{g_1^2}{4\pi} \left(\frac{P_3}{M_{\psi'}}\right)^3 M_{\psi'}$$

In the above P_3 and P_η are, respectively, the pion and η momenta. As a first estimate we take $g_1 \approx g_2$. For $0.02 \leq \lambda_{\eta} \leq 0.05$, we then obtain, using the published value \(^{14}\) for (4) to determine g_2, that

$$5 \text{ keV} \lesssim \Gamma_{\psi' \rightarrow \psi_H^0 \pi^0(\eta')} \lesssim 30 \text{ keV}$$

The largeness of this result can be intuitively understood by realizing that in the η decay mode $p_\eta = 198$ keV so $(p_\eta/M_{\psi'})^2 \approx \lambda_{\eta}^2$. We emphasize that we have only made a crude estimate: there is no a priori reason for relating g_1 and g_2. In particular, in a Lagrangian picture, the S wave coupling has a mass in the numerator whereas the P wave coupling has a mass in the denominator. We have taken both masses equal to $M_{\psi'}$. This might suggest taking g_1 smaller than g_2 would be more appropriate; on the other hand we have neglected the contribution due to the η', which may be even greater than the η contribution, the reason being that although $\lambda_{\eta'}$ is smaller than λ_{η}, the $\psi' \psi_H^0$ coupling violates SU(3) whereas the $\psi' \psi_H^0$ does not (in the limit of no $\eta - \eta'$ mixing). We note that although $\psi' \rightarrow \psi_H^0$ is present, if $M_{\psi_H^0} < 3400$ MeV, the decay is P wave and hence presumably very small ($\Gamma \ll 1$ keV).
The ψ system also allows us to have a direct and new important measurement of a potential isospin violating interaction by looking directly at the decay $\psi' \rightarrow \eta \pi^0$. The present published upper limit \cite{14} on the width of this decay mode is ≈ 0.3 keV. We estimate the contribution of the η pole to this process as

$$\Gamma_{\psi' \rightarrow \eta \pi^0} = \Gamma_{\psi' \rightarrow \eta \eta} \lambda^2 \left(\frac{P_{\eta^0}}{P_{\eta}} \right)^3$$ \hspace{1cm} (6)

and, for $0.02 \leq \lambda \leq 0.05$, we have

$$0.01 \text{ keV} \leq \Gamma_{\psi' \rightarrow \eta \pi^0} \leq 0.65 \text{ keV}$$ \hspace{1cm} (7)

Barring unforeseen cancellations between the η and the η' pole contributions, the upper limit \cite{14} of 0.3 keV already seems to exclude $\lambda \eta \geq 0.035$. An improved upper limit would probably rule out the u_3 isospin violating mechanism altogether.

Returning now to the $\psi' \rightarrow \eta \pi^0$ decay mode, let us see what its signal would be. Since the ψ_H has $P = 1^+$ pionic final states would involve at least one π^0; the $\eta \pi^0$ is probably an important decay mode. Some suggested modes that could be detected are

$$\psi_H \rightarrow \eta \phi, \bar{p}p, K^+K^0\pi^-$$ \hspace{1cm} (8)

We would also like to point out that the ψ_H may play an important role in the decay of higher ψ states \cite{6} such as the $\psi''(4414)$. For instance

$$\psi'' \rightarrow \psi_{H}\pi$$ \hspace{1cm} (9)

is an allowed S wave decay, and a naive estimate is that this has a width in the MeV range. There are other allowed S wave two-body decay modes for the ψ'' such as the decay into $P_0(0^+) + \omega$. Since the ψ'' width is relatively narrow (~ 30 MeV), this raises the intriguing possibility that the dominant decay modes of the ψ'' are into lower mass ψ like states, i.e., we have not passed a threshold for η constituents.
In conclusion we would like to reiterate the four main points of this paper. They are:

1) the $\bar{\psi}$ system allows us to test the magnitude of the $\eta - \pi^0$ transition by studying $\bar{\psi}' \rightarrow \pi^0$;

2) a mechanism has been suggested for finding the 1P_1 state, ψ_H;

3) the decay $\psi' \rightarrow \psi_H \pi^0$ may account for the "missing" ψ' decays;

4) two-body decays such as $\psi'' \rightarrow \psi_H \eta$ may be a substantial fraction of the total ψ'' decays.

We would like to thank B. Richter and J. Prentki for discussions and one of us (G.S.) would like to thank the Theoretical Physics Division of CERN for its hospitality.
REFERENCES

1) See, e.g.:
F.J. Gilman - "New Particle Spectroscopy and Decays", Invited talk at Orbis Scientiae 1976, University of Miami (January 1976), for a review of this situation.

