DIMENSIONAL REGULARISATION AND BROKEN CONFORMAL WARD IDENTITIES

S. Sarkar
CERN - Geneva

ABSTRACT

Dimensional regularization is used to give a simple treatment of broken conformal Ward identities. The method reproduces the known answers for standard theories. In addition it permits a derivation of the relevant identities for non-Abelian gauge theories. For the latter class of theories asymptotic scale invariance is found not to imply asymptotic conformal invariance for gauge variant Green functions. This is due to two gauge dependent insertions occurring in the identities. One can be predicted classically, whereas the other contains a new term dependent on Faddeev-Popov ghosts.

Ref.TH.1831-CERN
13 March 1974
INTRODUCTION

Intuitively we expect a theory to behave at large energies as if it were massless, i.e., scale invariant. In the context of quantum field theory it is now well known that this is wrong in general \(^1\). We would like to ask the same question for special conformal transformations \(^1\), which are just co-ordinate dependent scale transformations. We expect anomalies, but, we would like to know whether the anomalies are related to those in scale invariance. For non-gauge theories the answer is simple. The anomalies \(^2\) in conformal invariant Ward identities are in one to one correspondence with those in scale invariance. For gauge theories, classically, we expect the gauge fixing term to break conformal invariance; so apart from the terms related to the Callan-Symanzik anomalies \(^1\) and the gauge fixing term we might expect nothing. For Fermi type gauges this is true in Abelian \(^3\) gauge theories but false in non-Abelian ones \(^4\). We want to derive these results in a new and simple way \(^4\).

Whereas broken scale invariance Ward identities can be written down with ease for any renormalizable field theories \(^1\), this is not the case with broken conformal invariance Ward identities. It just happens that the scale properties of a field theory are very closely related to its behaviour under changes of subtraction points. This, in turn, reduces to a simple expression of the renormalizability of the theory. The situation is much less simple for conformal symmetry. Until very recently there existed one treatment for a quartically self-interacting scalar theory \(^2\), another rather different treatment for quantum electrodynamics \(^3\), and nothing for non-Abelian gauge theories. This is clearly not satisfactory. We will give a method which seems to show up the relation between the conformal anomalies and the Callan-Symanzik ones, and works for both gauge and non-gauge field theories. The method will consist of writing down the conformal Ward identities for regulated, but unrenormalized, Green functions. This can be easily done when we regulate the theories dimensionally \(^5\), since the divergences of Feynman graphs manifest themselves as poles at rational values of the space-time dimension \(n\). Consequently, away from the poles, the unrenormalized Green functions are finite. Canonical Ward identities for non-rational \(n\) are true relations between finite quantities. After writing the Ward identities in \(n\) dimensions, all that then remains is to express the regulated, but unrenormalized, Green functions in terms of the renormalized ones. This is most simply done when we have multiplicative renormalizability and we will concern ourselves for definiteness with this case.
In section one we shall consider the problem of obtaining Ward identities in n dimensions. In section two we shall treat the familiar problem of a quartically self-interacting scalar field. In the remaining section we shall consider a non-Abelian gauge theory which is general enough to show up any complications that may arise. The method used in section two is found to apply without modification.

1.

It is convenient to study Ward identities in the framework of generating functionals for Green functions of the theory. We shall define three generating functionals, Z, W and Γ^6. All can be expressed in terms of Z which we shall represent as a Feynman path integral. For relativistic field theories, the latter is of course a badly defined quantity. Nevertheless, it has been shown that the path integral method yields the same identities as those obtained from combinatorics 7. We regard the path integral as purely a device for simply performing combinatorics. It will be assumed throughout this section that we are working in a space-time of n dimensions at non-rational n.

In order to keep our notation compact we shall use a generalized summation convention first introduced by De Witt 3. Every index introduced will have internal symmetry as well as space-time connotations. A contraction of indices implies a summation over internal symmetry indices as well as an integration over space-time. The path integral representation for Z is

$$Z[J, K^a, K^a] = \int \prod_{i=1}^{s} D\phi_i \prod_{a=1}^{t} Dc_{a} \prod_{b=1}^{t} Dc_{b} \exp \left\{ \oint c_{a}^{+} M_{ab} \phi_{b} + S[\phi] - \frac{1}{2} F_{ab}(\phi) F_{ab}(\phi) \right\}$$

$$+ \oint J^{i} K^{a}_{i} c^{+}_{a} + K^{a}_{a} c^{+}_{a} \right\}$$

where

$$\{ \phi_{i}, \quad i = 1, \ldots, s \}$$

is the set of fields in the theory,

$$\{ c^{+}_{a}, c_{a}, \quad a = 1, \ldots, t \}$$

is the set of Faddeev-Popov ghosts 9, $S[\phi]$ is the action, $F_{ab}(\phi)$ is the gauge
fixing function, \(J, K, \) and \(K^\dagger \) are sources and \(M_{ab}(\phi) \) is a functional matrix required for unitarity \(^{10}\). For a simple theory, such as \(\phi^4 \), the matrix \(M(\phi) \) and \(F^\alpha(\phi) \) are zero. For Abelian gauge theories, if \(F^\alpha(\phi) \) is linear in \(\phi \), \(M(\phi) \) is zero. For non-Abelian gauge theories, even if \(F^\alpha(\phi) \) is linear in \(\phi \) and covariant, \(M(\phi) \) is non zero.

The Green functions \(G(x_1, \ldots, x_L) \) of interest are given by

\[
G(x_1, \ldots, x_L) \equiv \left(\frac{1}{i} \right)^L \frac{\delta^L}{\delta J(x_1) \cdots \delta J(x_L)} \left. \frac{\delta^L}{\delta K(x_1) \cdots \delta K(x_L)} \right|_{J = K = K = 0} Z[J, K^\dagger, K] \tag{1.2}
\]

\(G(x_1, \ldots, x_L) \) is finite but not connected. We are interested in connected, one particle irreducible Green functions. These latter Green functions are generated by \(^6\)

\[
\Gamma[\phi_i, \zeta_a, \zeta_a^\dagger] = W[J, K, K^\dagger] - J_i \phi^i - K^a \zeta_a^\dagger - K^\dagger_a \zeta_a \tag{1.3}
\]

with

\[
\exp \left(i W[J, K^\dagger, K] \right) = Z[J, K^\dagger, K]
\]

\[
\phi_i = \frac{\delta W}{\delta J_i} [J, K^\dagger, K]
\]

\[
\zeta_a^\dagger = \frac{\delta W}{\delta K^a} [J, K^\dagger, K]
\]

\[
\zeta_a = \frac{\delta W}{\delta K^\dagger_a} [J, K^\dagger, K]
\]
We have also the dual equations

\[\frac{\delta \Gamma}{\delta \Phi_i} = - J_i \quad , \quad \text{etc.} \] \hspace{1cm} (1.4)

It is simplest to find a functional Ward identity for \(Z \) and then, making use of (1.3), to write an equivalent statement for \(\Gamma^{11} \). For generality we shall consider an infinitesimal transformation on the fields of the form

\[\phi_i = \phi_i' + \left(f(x_i, \frac{\partial}{\partial x_i}) \phi \right)_i \] \hspace{1cm} (1.5)

\[c_a = c_a' + \left(e(x_i, \frac{\partial}{\partial x_i}) c \right)_a \]

where \(e \) and \(f \) are infinitesimal functions of space-time, e.g., for scale invariance

\[\phi_i(x) = \phi_i'(x) + \epsilon (x \cdot \partial + d_{(n)}) \phi_i'(x) \]

\[c_a(x) = c_a'(x) + \epsilon (x \cdot \partial + \frac{1}{2}(n-1)) c_a'(x) \]

where \(\epsilon \) is an infinitesimal parameter, and with \(d_{(n)} = \frac{3}{2} (n-2) \) for bosons, and \(d_{(n)} = \frac{3}{2} (n-1) \) for fermions. The above assignments of \(d_{(n)} \) are necessary for the action in \(n \) dimensions to be dimensionless.

The transformations (1.5) can be regarded as a change of variables in the path integral for \(Z \).

Hence

\[Z[J, \kappa^i, \kappa] = \int \prod_{i, a} D\phi_i D\phi_i' D\phi_i'' \det(1+f) \det (1+e)^2 \exp \left\{ \left(c_{a}^{\dagger} + (c_{a}^{'})^{\dagger} \right) M_{ab} (\phi + (f\phi')) (c_{b}^{\dagger} + (c_{b}^{'})^{\dagger}) + S[\phi + (f\phi')] - \frac{i}{2} F_{a}(\phi + (f\phi')) \phi^{a} \phi^{a} \right\} + \int_{i} (\phi + f\phi)^{i} \] \hspace{1cm} (1.6)
Now the generating functional Z is defined up to a possibly infinite factor, which is independent of the sources and fields and represents vacuum graphs. In (1.6) the factor $\det(1+f) \det(1+e)^2$ contributes to this vacuum renormalization.

Equating (1.1) and (1.6) we have

$$O = \int \prod_{i,a,a'} \delta \phi_i \delta c_a \delta c_a^+ \exp i \left(S[\phi] - \frac{i}{2} (F_a(\phi))^2 + J_i \phi_i^+ M_{ab} c_b \right)$$

$$+ \left\{ \delta (c_a^+ M_{ab} c_b) + \delta S[\phi] - \frac{i}{2} \delta (F_a(\phi))^2 + J_i (f(x_i, \frac{\partial}{\partial x_i} \phi)) \right\}$$

$$+ K_a^+ (f(x_a, \frac{\partial}{\partial x_a}) c_a^+) + K_a (f(x_a, \frac{\partial}{\partial x_a}) c_a)^+ \right\}$$

where δ is the symbol for infinitesimal transformations. For the situation of interest

$$M_{ab}(\phi) = m_{abc} \phi_c^+ + P_{ab}$$

where m_{abc} and P_{ab} are independent of fields; we shall confine ourselves to this case from now on.

Equation (1.7) contains the basis for the canonical Ward identity. Its functional form is

$$O = \left\{ \delta \left(\frac{\delta}{\delta x_i} \left(m_{abc} \frac{\delta}{\delta x_i} + P_{ab} \right) \right) + \delta S \left[\frac{\delta}{\delta x_i} \right] + \frac{1}{2} \delta (F_a(\frac{\delta}{\delta x_i}))^2 + K_a (e(x_a, \frac{\partial}{\partial x_a}) \frac{\delta}{\delta x_i})$$

$$+ \left. \left(f(x_i, \frac{\partial}{\partial x_i}) \frac{\delta}{\delta x_i} \right)_i + K_a^+ (e(x_a, \frac{\partial}{\partial x_a}) \frac{\delta}{\delta x_i})_a \right\} Z$$

If we are interested in Green functions which are not necessarily connected (1.8) is adequate; however, we require the Green functions generated by Γ.
Translating (1.8) into an equation in terms of \(\Gamma \) we have

\[
0 = -\frac{\delta \Gamma}{\delta \Phi_i} \left(f(x_i, \frac{\partial}{\partial x_i}) \left(\frac{i}{\delta x_j} + \Phi \right) \right)_i - \frac{\delta \Gamma}{\delta \xi_a} \left(e(\xi_a, \frac{\partial}{\partial \xi_a}) \left(\frac{i}{\delta k^+} + \xi^+ \right) \right)_a
\]

\[
- \frac{\delta \Gamma}{\delta \xi_a^+} \left(e(\xi_a, \frac{\partial}{\partial \xi_a}) \left(\frac{i}{\delta k^-} + \xi^- \right) \right)_a - \frac{1}{2} \delta \left(\frac{1}{\delta x_j} \left[\frac{i}{\delta \xi_a} + \frac{i}{\delta k^-} \right] \right)^2 (1.9)
\]

\[
+ \delta S \left[\frac{i}{\delta \xi_j} + \Phi \right] + \delta \left((\xi_a^+ + \frac{i}{\delta k_a}) \left(m_{abc}(\frac{i}{\delta \xi_c} + \Phi_c) + \xi_a \right) \left(\xi_b + \frac{i}{\delta k_b} \right) \right)
\]

where

\[
\frac{1}{i} \frac{\delta}{\delta k_a}
\]

for example, is really to be thought of as

\[
\frac{1}{i} \left(\frac{\delta}{\delta k_a} \frac{\delta}{\delta k_a} \frac{\delta}{\delta k_a} \frac{\delta}{\delta k_b} \right)
\]

Equation (1.9) is the basis for Ward identities that we shall use.

Provided that we are away from the poles in \(n \), these identities are true and relate finite quantities.

Much tedious calculation can be avoided if we note that the infinitesimal scale and conformal variations \(^{12}\), \(\delta_\varphi P \) and \(\delta_0 P \), of a Poincaré invariant functional \(P(\varphi) \) are given by

\[
\delta_\varphi P(\varphi) = \frac{\delta}{\delta \phi_i} \left(x^\nu P \right) + \left(\frac{\partial P}{\partial \phi_i} d_{(m)} \phi_i + \frac{\partial P}{\partial (\partial \phi_i)} (d_{(m)} + 1) \delta^k \phi_i \right) - n P (1.10)
\]
and

\[\delta \mathcal{L}(\phi) = \partial_\nu \left(\left(2 x^\nu x^\gamma - g^\nu\gamma x^2 \right) \mathcal{L}(\phi) \right) \]

\[+ 2 x^\nu \left(\frac{\partial \mathcal{L}}{\partial \phi_i} \right) d_m \phi_i + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_i)} (d_m + 1) \partial_\mu \phi_i - n \mathcal{L} \]

\[+ 2 \left(\frac{\partial \mathcal{L}}{\partial (\partial_\gamma \phi_i)} d_m \phi_i - \frac{\partial \mathcal{L}}{\partial (\partial_\gamma \phi_i)} (\Sigma^\gamma)^{ij} \phi_j \right) \]

(1.11)

where \((\Sigma^\gamma)^{ij}\) is a direct product of the spin matrix and the unit matrices in internal symmetry space and in space-time. The proofs of (1.13) and (1.14) are very simple.

The family of Ward identities is found by functionally differentiating equation (1.9) with respect to \(\phi\) and then setting all sources to zero \(^{11}\). For particular values of \(f\) and \(e\) we obtain the scale and conformal transformations.

2.

We shall now consider the Lagrangian \(\mathcal{L}\)

\[\mathcal{L} = \frac{1}{2} (\partial_\mu \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4 \]

(2.1)

where \(\phi\) is a scalar field.

For scale transformations

\[\delta \mathcal{L} = \partial_\nu (\phi^\nu \mathcal{L}) + m^2 \phi^2 + \frac{\lambda}{4!} (4-n) \phi^4 \]

(2.2)

For conformal transformations

\[\delta \mathcal{L} = \partial_\nu \left((2 x^\nu x^\gamma - g^\nu\gamma x^2) \mathcal{L} \right) + \frac{1}{2} (n-2) \partial_\nu (\phi^2) + 2 x^\nu m^2 \phi^2 \]

\[+ 2 x^\nu \frac{\lambda}{4!} (4-n) \phi^4 \]

(2.3)
It will be first useful to obtain the Callan-Symanzik equations in this approach in order to identify the anomalous terms, which, as we will see, are closely related to those in the conformal Ward identities. The scale invariance Ward identity is given by

\[
\sum_{i=1}^{L} \left(- \frac{\partial}{\partial x_i} \left(x_i \Gamma \left(\prod_{j=1}^{L} \phi(x_j) \right) \right) + \frac{1}{2} (n-2) \Gamma \left(\prod_{j=1}^{L} \phi(x_j) \right) \right)
\]

\[
= \int d^n x \left(m^2 \Gamma \left(\phi^2(x) \prod_{j=1}^{L} \phi(x_j) \right) + \frac{2}{4!} (4-n) \Gamma \left(\phi^4(x) \prod_{j=1}^{L} \phi(x_j) \right) \right) \quad (2.4)
\]

Here \(\Gamma \) denotes one particle irreducible Green functions.

Now

\[
\frac{\partial}{\partial m^2} \left(\Gamma \left(\prod_{j=1}^{L} \phi(x_j) \right) \right) \bigg|_{m} = -\frac{1}{2} i \int d^n x \Gamma \left(\phi^2(x) \prod_{j=1}^{L} \phi(x_j) \right) \quad (2.5)
\]

and

\[
\frac{\partial}{\partial \lambda} \left(\Gamma \left(\prod_{j=1}^{L} \phi(x_j) \right) \right) \bigg|_{\lambda} = -\frac{i}{4!} \int d^n x \Gamma \left(\phi^4(x) \prod_{j=1}^{L} \phi(x_j) \right) \quad (2.6)
\]

Hence

\[
\int d^n x \left(m^2 \Gamma \left(\phi^2(x) \prod_{j=1}^{L} \phi(x_j) \right) + \frac{2}{4!} (4-n) \Gamma \left(\phi^4(x) \prod_{j=1}^{L} \phi(x_j) \right) \right)
\]

\[
= \left(-2 \frac{m^2}{i} \frac{\partial}{\partial m^2} - \frac{\lambda}{i} (4-n) \frac{\partial}{\partial \lambda} \right) \Gamma \left(\prod_{j=1}^{L} \phi(x_j) \right) \quad (2.7)
\]
It is convenient at this stage to exploit the renormalizability of L. We will introduce renormalized quantities which will invariably be denoted by a suffix R.

\[
L = \frac{1}{2} (\partial_\mu \phi_R)^2 + \frac{1}{2} (Z_3 - 1) (\partial_\mu \phi_R)^2 - \frac{1}{2} m_R^2 \phi_R^2 - \frac{1}{4!} m_R^4 (Z_3 - 1) \phi_R^4 \tag{2.8}
\]

It has been shown that in the dimensional regularization formulation it we have

\[
Z_b = \mu^{n-4} \left(1 + \sum_{\nu=1}^{\infty} c_\nu (\lambda_R) \right) / (n-4)^\nu
\]

\[
m = \mu (m_R + m_R \sum_{\nu=1}^{\infty} b_\nu (\lambda_R) / (n-4)^\nu)
\]

\[
\lambda = \mu^{4-n} \left(\lambda_R + \sum_{\nu=1}^{\infty} a_\nu (\lambda_R) / (n-4)^\nu \right),
\tag{2.9}
\]

where

\[
\{ a_\nu, b_\nu, c_\nu ; \nu = 1, \ldots, \infty \}
\]

are smooth functions of λ_R, and μ is the unit of mass required in dimensional regularization.

The renormalized Green functions of the theory

\[
\Gamma \left(\prod_{j=1}^{l} \phi_R(x_j) \right)
\]

obey the following relation

\[
\Gamma \left(\prod_{j=1}^{l} \phi(x_j) \right) = Z_b^{l/2} \Gamma \left(\prod_{j=1}^{l} \phi_R(x_j) \right)
\tag{2.10}
\]
In the limit \(n \rightarrow 4 \) \(\Gamma [\prod_{j=1}^{L} \phi_R(x_j)] \) is finite; so the scale invariance Ward identity becomes

\[
\sum_{i=1}^{L} \left(-\frac{2}{i} \left(x_i \right)^{z_3^{L/2}} \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) \right) + \frac{1}{2} (n-2) \frac{1}{2} (n-2) \frac{1}{2} \left(x_i \right)^{z_3^{L/2}} \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right)
\]

\[
= \left(-\frac{2}{i} m^2 \frac{2}{i} m^2 - \frac{1}{i} (4-n) \frac{2}{i} \frac{2}{i} \right) \left(z_3^{L/2} \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) \right)
\]

\[
= \left(-\frac{2}{i} m^2 \frac{2}{i} m^2 - \frac{1}{i} (4-n) \frac{2}{i} \frac{2}{i} \right) \left(z_3^{L/2} \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) \right)
\]

\[
+ \left(-\frac{2}{i} m^2 \frac{2}{i} m^2 - \frac{1}{i} (4-n) \frac{2}{i} \frac{2}{i} \right) \left(z_3^{L/2} \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) \right)
\]

This simplifies to

\[
i \sum_{i=1}^{L} \left(-\frac{2}{i} \left(x_i \right)^{z_3^{L/2}} \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) \right) + \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right)
\]

\[
+ \left(\beta \frac{2}{i} m^2 + \alpha \frac{2}{i} m^2 + \frac{1}{2} \frac{2}{i} \frac{2}{i} \right) \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right)
\]

\[
= 0
\]

with

\[
\beta = \left((4-n) \lambda \frac{2}{i} m^2 \right) \frac{2}{i} \frac{2}{i} \left(\prod_{j=1}^{L} \phi_R(x_j) \right)
\]

\[
\gamma = \left((4-n) \lambda \frac{2}{i} m^2 \log z_3 \right) \frac{2}{i} \frac{2}{i} \left(\prod_{j=1}^{L} \phi_R(x_j) \right)
\]
\[\alpha = 2m^2 \left. \frac{\partial m_R^2}{\partial m^2} \right|_{\lambda, \mu} + (4 - \eta) \lambda \left. \frac{\partial m_R^2}{\partial \lambda} \right|_{m, \mu} \]

\[\bar{\alpha} = \lim_{n \to 4} \alpha, \quad \bar{\beta} = \lim_{n \to 4} \beta, \quad \bar{\gamma} = \lim_{n \to 4} \gamma \]

and

\[\bar{\Gamma} \left(\prod_{i=1}^{l} \phi_R(x_j) \right) = \lim_{n \to 4} \Gamma \left(\prod_{i=1}^{l} \phi_R(x_j) \right) \]

For later use we note that

\[\frac{\partial}{\partial w^2} \Gamma \left(\prod_{i=1}^{l} \phi_R(x_j) \right) = i \int d^n x \Gamma \left(O(x) \prod_{i=1}^{l} \phi_R(x_j) \right) \]

(2.13)

where

\[O(x) = -\frac{1}{2} Z_3 \phi^2_R(x) \]

and

\[\frac{\partial}{\partial \lambda_R} \Gamma \left(\prod_{i=1}^{l} \phi_R(x_j) \right) = i \int d^n x \Gamma \left(O'(x) \prod_{i=1}^{l} \phi_R(x_j) \right) \]

(2.14)

with

\[O'(x) = -\frac{1}{4!} \left(1 + 2 \lambda_R \frac{\partial Z_3}{\partial \lambda_R} \right) \phi^4_R(x) + \frac{1}{2} \frac{\partial Z_3}{\partial \lambda_R} \left(\frac{\partial}{\partial \mu} \phi_R(x) \right)^2 \]

\[-\frac{1}{2} m_R^2 \frac{\partial Z_3}{\partial \lambda_R} \phi^2_R(x) \]
We see that \(O(x) \) and \(O'(x) \) contain all operators that can mix with \(\phi^2 \) and \(\phi^4 \) respectively, except, in the latter case, operators that differ by partial integrations from those in \(O'(x) \), i.e., \(\phi(\delta^2 \phi) \). Hence, from (2.12), (2.13) and (2.14)

\[
\begin{align*}
Z^{-\frac{1}{2}} \int d^n x & \quad \Gamma \left(\left(m^2 \phi^2(x) + \frac{\lambda}{4!} (4-n) \phi^4(x) \right) \prod_{i=1}^{L} \phi(x_i) \right) \\
= & \quad - \beta \int d^n x \quad \Gamma \left(O(x) \prod_{j=1}^{L} \phi_R(x_j) \right) + \frac{i}{2} \sum_{j=1}^{L} \int d^n x \quad \delta(x-x_j) \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) \\
& \quad - \alpha \int d^n x \quad \Gamma \left(O(x) \prod_{j=1}^{L} \phi_R(x_j) \right)
\end{align*}
\]

(2.15)

This has the consequence that

\[
\begin{align*}
Z^{-\frac{1}{2}} \quad \Gamma \left(\left(m^2 \phi^2(x) + \frac{\lambda}{4!} (4-n) \phi^4(x) \right) \prod_{i=1}^{L} \phi(x_i) \right) \\
= & \quad - \beta \Gamma \left(O''(x) \prod_{j=1}^{L} \phi_R(x_j) \right) + \frac{\chi}{2} \sum_{j=1}^{L} \delta(x-x_j) \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) \\
& \quad - \alpha \Gamma \left(O(x) \prod_{j=1}^{L} \phi_R(x_j) \right)
\end{align*}
\]

(2.16)

where \(O''(x) \) differs from \(O'(x) \) by operators such as \(\phi \delta^2 \phi \), as indicated above. These extra operators just play the role of cancelling divergences proportional to the momentum inflow of the insertions.

Now following the method given in section one we can write down the broken conformal Ward identities for the regulated, but unrenormalized, Green functions, viz.
\[\sum_{i=1}^{L} \left(-\frac{2}{\partial x_i^\nu} \left(2 x_i^\kappa x_i^\nu - \phi_i x_i^\nu \right) \Gamma \left(\prod_{j=1}^{L} \phi(x_j) \right) + 2 x_i^\kappa \frac{(n-2)}{2} \Gamma \left(\prod_{j=1}^{L} \phi(x_j) \right) \right) \]
\[+ \int d^n x \ 2 x^\kappa \Gamma \left(\left(m^2 \phi^2(x) + \frac{\kappa}{4} (4-n) \phi^4(x) \right) \prod_{j=1}^{L} \phi(x_j) \right) \]
\[= 0 \] (2.17)

The last term here is just the same as that appearing in (2.4) except for the \(2x^\kappa\) factor.

Hence we have (on invoking multiplicative renormalizability)

\[\sum_{i=1}^{L} \left(-\frac{2}{\partial x_i^\nu} \left(2 x_i^\kappa x_i^\nu - \phi_i x_i^\nu \right) \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) + 2 x_i^\kappa \left(\frac{\kappa}{2} \Gamma' + 1 \right) \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) \right) \]
\[- \bar{\beta} \int d^n x \ 2 x^\kappa \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) - \bar{\alpha} \int d^n x \ 2 x^\kappa \Gamma \left(\prod_{j=1}^{L} \phi_R(x_j) \right) \] (2.18)
\[= 0 \]

This is the broken conformal Ward identity of the theory and agrees with the equations obtained by other methods \(^2\). Since \(\phi'(x)\) is a soft operator, it is clear from (2.18) that at an eigenvalue of \(\beta\) we have conformal invariance asymptotically; so for \(\phi^4\) theory asymptotic scale invariance implies asymptotic conformal invariance.

3.

We will consider a gauge field theory for a compact semi-simple group. When the gauge group is non-Abelian, no derivations of conformal Ward identities exist using the standard methods.
The Lagrangian \(\mathcal{L} \) to be studied involves Yang-Mills fields \(A^a_\mu \) and fermions \(\psi \) transforming under a representation \(\sigma \) of the gauge group.

\[
\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + \bar{\psi} i \gamma^\mu D_\mu \psi - \bar{\psi} m \psi
\]

where

\[
F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu
\]

\[
D_\mu = \frac{1}{2} (\not{\partial_\mu} - A_\mu^a \sigma^a) - ig \sigma^a A^a_\mu
\]

and \(m \), for convenience, is proportional to the unit matrix. The constant \(g \) is the gauge coupling and \(\{ f^{abc} \} \) the set of structure constants. We have not taken a Lagrangian with interactions involving \(\gamma_5 \), but there exist now methods \(^{14}\) for incorporating this quantity naturally into the dimensional regularization scheme. The gauge fixing function \(F_\alpha(A) \) will be taken to be

\[
F_\alpha(A) = \xi^{-\frac{1}{2}} \partial_\alpha A^a_\mu
\]

\(\xi \) being some number which determines the gauge e.g., \(\xi = 1 \) gives the Feynman gauge, and \(\xi = 0 \) the Landau gauge.

The variations of \(\mathcal{L} \) under infinitesimal scale and conformal transformations are denoted as in previous sections by \(\delta_\chi \mathcal{L} \) and \(\delta_\sigma \mathcal{L} \)

\[
\delta_\chi \mathcal{L} = \partial_\nu (x^\nu \mathcal{L}) + m \bar{\psi} \psi + \frac{1}{2} g (n-4) \bar{\psi} \gamma^\mu \sigma^a A^a_\mu \psi
\]

\[
+ \frac{1}{4} g (n-4) f^{abc} A^b_\mu A^c_\nu F^a_{\mu\nu}
\]

\[
- \frac{1}{2} g (n-4) f^{abc} \partial_\mu c^a A^c_\mu c_b
\]
Also

\[
\delta^x_\mathcal{L} = \partial_\nu \left((2 \psi^x \psi - g^a \psi^x) \mathcal{L} \right) + 2 \psi^x \left(m \overline{\psi} \psi + \frac{1}{2} (n-4) g \overline{\psi} \gamma^a \sigma^a A^a \psi \right) \\
+ \frac{1}{4} g (n-4) f^{abc} A^a_{\mu} \overline{A}^c_{\nu} F^a_{\mu \nu} - \frac{1}{2} g (n-4) f^{abc} \partial_\rho c^a \overline{A}^c_{\mu} c^b \\
+ \frac{1}{2} (n-2) f^{abc} c^a \overline{A}^c_{\mu} c^b - \frac{1}{4} (n-4) \gamma^a \left(\overline{A}^a_{\mu} \right)^2 + \frac{1}{2} (n-4) \gamma^a \overline{A}^a_{\mu} (3.4) \\
- \frac{1}{2} (n-4) \left(\partial_\xi \overline{A}^a_{\mu} \right) A^a_{\alpha} + \frac{1}{2 \xi} \nabla \left(\partial_\xi A^a_{\mu} \right) A^a_{\alpha}
\]

Both (3.3) and (3.4) are just particular applications of (1.10) and (1.11).

Since we are interested in relating the anomalies in the conformal Ward identities to those in the Callan-Symanzik equations, we will first obtain the latter equations by our method.

The scale invariance Ward identity for the regulated one particle irreducible Green functions \(\Gamma \) is given by

\[
\int d^{n-1}x \Gamma \left(m \overline{\psi}(x) \psi(x) \prod_{j=1}^{L} A^a_{\mu}(x_j) \right) \\
+ \int d^{n-1}x \frac{1}{2} g (n-4) \Gamma \left((\overline{\psi}(x) \gamma^a \sigma^a A^a_{\mu}(x) \psi(x) + \frac{1}{2} f^{abc} A^a_{\mu}(x) \overline{A}^c_{\nu} F^a_{\mu \nu}(x) \\
- f^{abc} \partial_\rho c^a \overline{A}^c_{\mu} c^b \right) \prod_{j=1}^{L} A^a_{\mu}(x_j) \right) \\
- \sum_{i=1}^{L} (4 - \frac{1}{2} (n-2)) \Gamma \left(\prod_{j=1}^{L} A^a_{\mu}(x_j) \right) - \frac{2}{\partial x_i} \left(x_i \Gamma \left(\prod_{j=1}^{L} A^a_{\mu}(x_j) \right) \right) \\
= 0
\]

We can relate the Green function

\[
\Gamma \left(m \overline{\psi}(x) \psi(x) \prod_{j=1}^{L} A^a_{\mu}(x_j) \right)
\]
and the other Green functions in (3.5) to simple derivatives with respect to g and m. In fact

\[
\frac{\partial}{\partial m} \Gamma \left(\prod_{j=1}^{L} A_{j}^{(x_{j})} \right) = i \int d^{n}x \Gamma \left(\bar{\psi}(x) \psi(x) \prod_{j=1}^{L} A_{j}^{(x_{j})} \right) \quad (3.6)
\]

\[
\frac{\partial}{\partial g} \Gamma \left(\prod_{j=1}^{L} A_{j}^{(x_{j})} \right) = i \int d^{n}x \Gamma \left(\Theta(x) \prod_{j=1}^{L} A_{j}^{(x_{j})} \right) \quad (3.7)
\]

where

\[
\Theta(x) = \frac{1}{2} F_{\mu \nu}^{a}(x) A_{b}(x) \Gamma^{\nu}(x) f^{abc} - \bar{\psi}(x) \gamma^{\mu} \sigma_{a} A_{\rho}^{a}(x) \psi(x) - f_{abc} \partial_{\mu} c_{(x)}^{a} A_{\rho}^{c}(x) c_{b}(x)
\]

Using (3.6) and (3.7) the identity (3.5) reduces to

\[
\left(- \frac{m}{i} \frac{\partial}{\partial m} + \frac{1}{2} q (n-4) \frac{1}{i} \frac{\partial}{\partial g} \right) \Gamma \left(\prod_{j=1}^{L} A_{j}^{(x_{j})} \right) \quad (3.8)
\]

\[
- \sum_{i=1}^{L} \left(\frac{1}{2} \frac{\partial}{\partial x_{i}} \Gamma \left(\prod_{j=1}^{L} A_{j}^{(x_{j})} \right) - \frac{1}{i} \frac{\partial}{\partial x_{i}} \Gamma \left(\prod_{j=1}^{L} A_{j}^{(x_{j})} \right) \right)
\]

\[= 0 \]

The Lagrangian (3.1) is well known to be renormalizable \cite{7,15}, i.e., the ultra-violet divergences of the Green functions can be absorbed by adding a finite set of counter-terms to L without losing gauge invariance. In some cases the Green functions are infra-red infinite, but we shall ignore such problems. Indeed for many physical applications of gauge theories, such as in unified models of weak and electromagnetic interactions, the infra-red problem can be dealt with.
Multiplicative renormalizability can be expressed by

\[\Gamma \left(\prod_{i=1}^{L} A_{i}^{a_{i}}(x_{i}) \right) = Z_{3}^{\frac{1}{2}} L \Gamma \left(\prod_{i=1}^{L} A_{R}^{a_{i}}(x_{i}) \right) \]

(3.9)

where \(Z_{3} \) is the wave function renormalization of \(A_{R} \). Relations very similar to (2.9) hold.

Consequently

\[- \sum_{i=1}^{L} \left(4 - \frac{1}{2}(n-2) \right) \Gamma \left(\prod_{j=1}^{L} A_{R}^{a_{j}}(x_{j}) \right) - \frac{\partial}{\partial x_{i}} \left(x_{i} \Gamma \left(\prod_{j=1}^{L} A_{R}^{a_{j}}(x_{j}) \right) \right) \]

\[+ \frac{1}{2} \Gamma \left(\prod_{j=1}^{L} A_{R}^{a_{j}}(x_{j}) \right) \]

(3.10)

= 0

This is basically the Callan-Symanzik equation in a somewhat unusual form.

If we express derivatives with respect to \(m \) and \(g \) in terms of \(m_{R} \), \(\xi_{R} \) and \(\nu_{R} \), we have

\[\frac{1}{2} \beta \Gamma \left(\prod_{j=1}^{L} A_{R}^{a_{j}}(x_{j}) \right) + \alpha \frac{\partial}{\partial \nu_{R}} \Gamma \left(\prod_{j=1}^{L} A_{R}^{a_{j}}(x_{j}) \right) \]

(3.11)

[formula]

= 0
\[\beta = \frac{1}{2} g (n-4) \left. \frac{\partial g_R}{\partial g} \right|_{m, \mu} \]
\[\gamma = (-m \frac{\partial}{\partial m} \log Z \bigg|_{g, \mu} + \frac{1}{2} g (n-4) \left. \frac{\partial \log Z}{\partial g} \right|_{m, \mu}) \]
\[\rho = \frac{1}{2} (n-4) g \left. \frac{\partial \xi_R}{\partial g} \right|_{m, \mu} \]
\[\alpha = (-m \frac{\partial w_R}{\partial m} \bigg|_{g, \mu} + \frac{1}{2} g (n-4) \left. \frac{\partial w_R}{\partial g} \right|_{m, \mu}) \]

In the limit \(n \to 4 \) we have the conventional Callan-Symanzik equation. All the Green functions involved as well as the \(\beta, \gamma, \rho \) and \(\alpha \) are finite (from standard arguments).

The Lagrangian, in terms of renormalized quantities \(^{15} \), is given by

\[
\mathcal{L} = -\frac{1}{4} \left(\partial^\mu A^\nu_{R a} - \partial^\nu A^\mu_{R a} - g_R \, f^{abc} A^\mu_{R b} A^\nu_{R c} \right)^2
- \frac{1}{2} \xi_R (\partial^\mu A^\nu_{R a})^2
- \frac{1}{4} (Z_3 - 1) (\partial^\mu A^\nu_{R a} - \partial^\nu A^\mu_{R a})^2
+ \frac{1}{2} g_R (Z_1 - 1) f^{abc} A^\mu_{R b} A^\nu_{R c} (\partial^\mu A^a_{R \nu} - \partial^\nu A^a_{R \mu})
- \frac{1}{4} g_R (Z_1^2 - 1) (f^{abc} A^\mu_{R b} A^\nu_{R c})^2
- \overline{\Psi}_R m_R \Psi_R
+ \frac{\alpha}{Z_3} c^+_R \left(\partial^\mu \delta_{ab} - g_R \frac{Z_1}{Z_3} \frac{\partial^\mu}{\partial \mu} A^\mu_{R c} f^{abc} \right) c_{R b}
\]
\[+ Z_2 \bar{\Psi}_R \left(i \gamma^\mu \frac{1}{2} \left(\nabla^\mu - \xi^\mu \right) - (Z' - Z_2^{-1}) m_R \right) \Psi_R \]
\[+ g_R \left(Z_1 Z_3 Z_3^{-1} - 1 \right) \bar{\Psi}_R \gamma^\mu \sigma^\alpha A_{R \alpha}^\mu \Psi_R + g \bar{\Psi}_R \gamma^\mu \sigma^\alpha A_{R \mu}^\alpha \Psi_R \]

where
\[A_{a}^\mu = Z_2^{1/2} A_{R \alpha}^\mu \]
\[q = q'_R Z_1 Z_2^{-3/2} \]
\[\xi = \xi' \]
\[\psi_j = Z_2^{1/2} \psi_{R j} \]
\[m = Z' m_R \]

From now on whenever we refer to \(L \) we shall mean the form given in (3.12).

Now equations (3.10) and (3.11) imply that

\[Z_2^{-1/2} \int d^n x \Gamma \left((m \bar{\psi}(x) \psi(x) + \frac{i}{2} q(n-4) \left(\bar{\psi}(x) \gamma^\mu \sigma^\alpha A_{R \alpha}^\mu \psi(x) \right) \right. \]
\[+ \frac{i}{2} \sum_{j=1}^{l} \int d^n x \delta(x-x_j) \Gamma \left(\prod_{j=1}^{l} A_{\mu}^a (x_j) \right) \]
\[= \frac{1}{2} i \gamma \sum_{j=1}^{l} \int d^n x \delta(x-x_j) \Gamma \left(\prod_{j=1}^{l} A_{\mu}^a (x_j) \right) \]
\[- \alpha \int d^n x \Gamma \left(O_1(x) \prod_{j=1}^{l} A_{R \alpha}^a (x_j) \right) \]
\[- g \int d^n x \Gamma \left(O_2(x) \prod_{j=1}^{l} A_{R \alpha}^a (x_j) \right) \]

(3.13)
\[- \beta \int d^a x \sum_{i=1}^{l} A_{R}^{a_j}(x_i) \Gamma (O_3(x) \prod_{j=1}^{l} A_{R}^{a_j}(x_j)) \]

where

\[O_1(x) = \frac{\partial L(x)}{\partial m_R}, \quad O_2(x) = \frac{\partial L(x)}{\partial \xi_R} \quad \text{and} \quad O_3(x) = \frac{\partial L(x)}{\partial g_R} \]

This is just the analogue of equation (2.15). \(O_1(x) \) is simply bilinear in the \#'s whereas \(O_3(x) \) contains \(F_{\mu\nu}(x) f^{abc}_{\mu\nu} A^b_{\mu}(x) A^c_{\nu}(x) \) and all the operators that mix with it (except for operators which differ by partial integrations). \(O_2(x) \) has a similar structure to \(O_3(x) \) which can be seen from evaluating \(\partial L(x)/\partial \xi_R \).

The unrenormalized Ward identity for broken conformal invariance is

\[\left(\sum_{i=1}^{l} (\partial_i (2 x_i^a x_j^a - g x_i^a x_j^a)) \Gamma (\prod_{j=1}^{l} A_{R}^{a_j}(x_j)) - 2 x_i^a \delta_{ij} \Gamma (\prod_{j=i}^{l} A_{R}^{a_j}(x_j) A_{R}^{a_i}(x_i)) \right) \\
+ 2 x_i^a \Gamma (\prod_{j\neq i}^{l} A_{R}^{a_j}(x_j) A_{R}^{a_i}(x_i)) - (n - 2) x_i^a \Gamma (\prod_{j}^{l} A_{R}^{a_j}(x_j)) \right) \\
+ \int d^a x \left(\partial_i (m \bar{\psi}(x) \psi(x)) + \frac{3}{2} (n - 4) g \bar{\psi}(x) \gamma^\mu \gamma^\nu \partial_\mu \partial_\nu A_{R}^{a}(x) \psi(x) \right) \\
+ \frac{1}{4} g (n-4) f^{abc}_{\mu\nu} A_{R}^{a}(x) \partial_\mu \partial_\nu A_{R}^{b}(x) - \frac{1}{2} g (n-4) f^{abc}_{\mu\nu} \partial_\mu A_{R}^{a}(x) \partial_\nu A_{R}^{b}(x) \Gamma (A_{R}^{a}(x)) \\
+ \int d^a x \left(\left(\bar{A}_{R}^{a}(x) A_{R}^{a}(x) \right) \prod_{j}^{l} A_{R}^{a_j}(x_j) \right) \right) \]

\[= 0 \]
In (3.14) we have restricted ourselves to vector meson Green functions, purely for brevity. For the general case, when we have mixed fermion and vector meson Green functions, the conformal Ward identity differs from (3.14) merely by the addition of

\[\mathcal{F}_\text{fermion} \]

where \(\mathcal{F}_\text{fermion} \) is the conformal operator for fermions viz.

\[\mathcal{F}_\text{fermion} = - \partial_\nu \left(2 x^\nu x^\mu - g^{\nu \mu} x_i^2 \right) + 2 x_\nu \left(\frac{3}{2} g^{\mu \nu} - \frac{1}{4} [Y, \gamma] \right) - \left(2 x^\nu x^\mu - g^{\nu \mu} x_i^2 \right) \partial_\nu \]

The second set of terms in (3.14) is identical to those occurring in the Callan-Symanzik equation except for the factor \(2 x^\alpha \). By reasoning similar to that in the \(\phi^4 \) case we have for the renormalized broken conformal Ward identity

\[
\sum_{i=1}^{L} \left\{ \partial_\nu \left(\frac{2 x^\nu x^\mu - g^{\nu \mu} x_i^2}{2} \right) \bar{\Gamma} \left(\prod_j A_{R, \nu}^{a_i}(x_j) \right) - 2 x_\nu \delta_\mu \nu \bar{\Gamma} \left(\prod_j A^{a_i}(x_j) \right) \right\}
\]

\[
+ 2 x_i \bar{\Gamma} \left(\prod_{j \neq i} A_{R, \nu}^{a_i}(x_j) A_{R, \nu}^{a_i}(x_i) \right) - 2 x_i \left(1 - \frac{1}{2} i \gamma \right) \bar{\Gamma} \left(\prod_j A_{R, \nu}^{a_i}(x_j) \right)
\]

\[
+ \int d^4x \ 2 x^\mu \beta \bar{\Gamma} \left(O_3'(x) \prod_{j=1}^{L} A_{R, \nu}^{a_j}(x_j) \right)
\]

\[
+ \int d^4x \ 2 x^\mu \alpha \bar{\Gamma} \left(O_4'(x) \prod_{j=1}^{L} A_{R, \nu}^{a_i}(x_j) \right)
\]

\[
+ \int d^4x \ 2 x^\mu \rho \bar{\Gamma} \left(O_2'(x) \prod_{j=1}^{L} A_{R, \nu}^{a_j}(x_j) \right)
\]

\[
+ \lim_{n \to 4} \int d^4x \ \Gamma \left(\hat{O}^\nu(x) \prod_{j=1}^{L} A_{R, \nu}^{a_j}(x_j) \right)
\]

\[= 0 \]
The operator \(\delta^n(x) \) is defined as

\[
\delta^n(x) = C_1(x) + C_2(x)
\]

\[
C_1(x) = \frac{1}{2} Z_3 \left(- \left((n-4) - \frac{\eta}{\xi} \right) \delta \cdot A(x) \right)
\]

\[
C_2(x) = -\frac{1}{2} g (n-2) f^{abc} c_a(x) \tilde{A}^c(x) c_b(x) \Sigma_3 Z_3^{1/2}
\]

[Moreover, as in the \(\Phi^4 \) case, \(O_2^+(x) \) and \(O_3^+(x) \) are the same as the
undashed operators except for terms which differ by partial integrations
from those in \(O_2^-(x) \) and \(O_3^-(x) \).]

The main difference between (3.15) and (2.18) is the presence of
the \(\delta^n(x) \) term. This term is finite because the scale invariance Ward
identity allows us to conclude that all the other terms which appear
are finite. The operator \(C_1(x) \) is expected classically. For Abelian theories
the \(C_2(x) \) term is not present and so we recover the result found for quantum
electrodynamics using normal product algorithms \(^3\). The \(C_2 \) term, however,
is present in the general case of non-Abelian gauge theories. It serves to
cancel some of the divergences associated with the insertion \(A_a^0 \delta \cdot A^a \). From
divergence counting we find that the Green functions with an \(\delta^n(x) \) insertion
are not asymptotically negligible when compared to the other terms in (3.15).
Hence, at an eigenvalue of \(\rho \) and a non-zero eigenvalue of \(\beta \)
conformal invariance is broken [by the presence of \(\delta^n(x) \)]. (The case of the zero eigen-
value of \(\beta \) is trivial.) Our statements apply to gauge variant Green functions
only, since we are arguing from (3.15). The gauge invariant operators are
usually composite, and, although it is possible to obtain an analogue of (3.14),
the renormalizability of the composite operators is in general not multica-
tive. We expect still to have the insertions \(\delta^n(x) \) in conformal identities
for gauge invariant Green functions; we might hope that such insertions, since
they are essentially gauge dependent, may annihilate gauge invariant Green
functions. At the level of perturbation theory, this is not true in general.
It is possible to convince oneself of this by looking at the Lagrangian

\[
\mathcal{L} = \frac{1}{2} (\partial \mu \phi)^2 - \frac{1}{4} F_\mu \nu F_\mu \nu + i \overline{\psi} \gamma^\mu D_\mu \psi - \overline{\psi} m_1 \psi
\]

\[
- \frac{1}{2} m_2^2 \phi^2 - \frac{1}{4!} \lambda \phi^4 - \frac{1}{3!} \lambda' \phi^3 + \hbar \overline{\psi} \psi \phi
\]
(where in addition to the gauge vector mesons, and fermions of mass m_1, we have a scalar gauge invariant field ϕ of mass m_2). For this Lagrangian

$$\Gamma (\hat{O}^{(x)} \phi_R^{(x)} \phi_R^{(Z)})$$

is non-zero in low orders of perturbation theory. It may be true that such Green functions are zero at a non-zero eigenvalue of $\hat{\beta}$, but this is a non-perturbative statement and we cannot prove or disprove it.

Although we have concentrated on broken conformal Ward identities, the method employed should be useful for studying the response of Green functions to any infinitesimal transformations of the field operators in a renormalizable field theory; after all, the crucial ingredient in our approach was our ability to write down Ward identities in n dimensions for regulated but unrenormalized Green functions.

ACKNOWLEDGMENTS

I would like to thank G. 't Hooft, R.J. Crewther, for fruitful discussions and also C.H. Llewellyn Smith and J.S. Bell, for useful comments. I acknowledge support from the Science Research Council, U.K.
REFERENCES

1) S. Coleman, "Dilatations", lectures given at the 1971 International Summer School of Physics, "Ettore Majorana".

2) G. Parisi, Phys. Letters 39B, 643 (1972);

5) G.'t Hooft and M. Veltman, Nuclear Phys. B44, 189 (1972);
C.G. Bellini and J.J. Giambiagi, Phys. Letters 40B, 566 (1972);

7) G.'t Hooft and M. Veltman, Diagrammar, CERN report 73-9.

11) A.A. Slavnov, Theoretical and Mathematical Physics 10, 99 (1973);
J.C. Taylor, Nuclear Phys. B33, 436 (1971);
B.W. Lee, Phys. Letters 46B, 214 (1973);

12) G. Mack and A. Salam, Ann. Phys. 52, 174 (1969);
S. Ferrara, R. Gatto and A.F. Grillo, Conformal Algebra in Space Time,
Springer Tracts in Modern Physics Vol.67 (Springer-Verlag 1973);
B. Zumino, 1970 Brandeis Summer Institute in Theoretical Physics Vol.2

13) G.'t Hooft, Nuclear Phys. B61, 455 (1973);
M.J. Holweder, W.J. Van Neerven and R.P. Van Royen, Nijmegen preprint

14) G.'t Hooft (private communication) informs me that M. Veltman has a method
of incorporating γ_5 naturally into the dimensional regularization
scheme;
see also :

15) G.'t Hooft, Nuclear Phys. B33, 173 (1971);