Charge Radius of the Short-Lived 68Ni and Correlation with the Dipole Polarizability

S. Kaufmann,1 J. Simonis,2 S. Bacca,2,3 J. Billowes,4 M. L. Bissell,4 K. Blaum5, B. Cheal,6 R. F. Garcia Ruiz,4,7,8 W. Gins,8 C. Gorges,1 G. Hagen,9 H. Heylen,5,7 A. Kanellakopoulos,6 S. Malbrunot-Ettenauer,7 M. Miorelli,10 R. Neugart,5,11 G. Neyens6,7,8 W. Nörtershäuser1,10 R. Sánchez,12 S. Sailer,13 A. Schwenk,1,5,14 T. Ratajczyk,1 L. V. Rodríguez,15 L. Wehner,16 C. Wraith,6 L. Xie,8 Z. Y. Xu,8 X. F. Yang,6,17 and D. T. Yordanov15

1Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
2Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
3Helmholtz Institute Mainz, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
4School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, United Kingdom
5Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
6Oliver Lodge Laboratory, Oxford Street, University of Liverpool, Liverpool L69 7ZE, United Kingdom
7Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
8KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
9Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
10TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada
11Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
12GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
13Technische Universität München, D-80333 München, Germany
14ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
15Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France
16Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany
17School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

(Received 30 January 2020; revised manuscript received 6 March 2020; accepted 11 March 2020; published 1 April 2020)

We present the first laser spectroscopic measurement of the neutron-rich nucleus 68Ni at the $N = 40$ subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_D has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus 48Ca. Three-particle–three-hole correlations in coupled-cluster theory substantially improve the description of the experimental data, which allows to constrain the neutron radius and neutron skin of 68Ni.

DOI: 10.1103/PhysRevLett.124.132502

Introduction.—The nuclear equation of state (EOS) plays a key role in supernova explosions and compact object mergers. In fact, the gravitational wave signal from the neutron star merger GW170817 has recently lead to constraints on the EOS of neutron-rich matter [1], which is consistent with our knowledge of nuclear physics. While the EOS of symmetric nuclear matter is well constrained around saturation density ρ_0, the properties of neutron-rich matter are still rather uncertain. These properties are encoded in the nuclear symmetry energy $S(n)$ as a function of density n and the slope parameter $L = 3n_0\partial S(n_0)/\partial n$ at saturation density n_0. Studies on atomic nuclei can provide information on the L parameter [3] through a nuclide’s neutron-skin thickness $R_{\text{skin}} = R_n - R_p$ defined as the difference between the point-neutron and point-proton radii. The neutron skin is a consequence of the competition between the surface tension and the pressure of neutron matter, which is determined by the L parameter. In the heavy nucleus 208Pb energy density functional (EDF) calculations confirmed this strong correlation between R_{skin} and L with a correlation coefficient of 0.979. This allows one to further constrain L based on R_{skin} [4]. Unfortunately, the direct measurement of R_{skin} is experimentally very challenging. In recent measurements it was extracted by its correlation to the dipole polarizability α_D, which can be explored, e.g., with proton inelastic scattering, as was the case for 48Ca [5].
The only short-lived nucleus for which this Letter, we focus on the charge radius of ^{68}Ni, using Coulomb excitation in inverse kinematics. The pygmy and the giant dipole resonances were observed and α_D was extracted [12]. In this Letter, we focus on the charge radius of ^{68}Ni, determined by collinear laser spectroscopy. It is the first laser spectroscopy result on a short-lived nickel isotope, since access to this element at ISOL facilities is limited due to the slow release from the target. On the theory side, we report on the first coupled-cluster calculation including triples of R_c and α_D of ^{68}Ni based on chiral EFT interactions, being now the heaviest system for which this has been achieved. Particularly, we study the correlation of the charge radius with the dipole polarizability. The measured charge radius in combination with the experimental dipole polarizability enables the first test of this correlation in a neutron-rich medium-mass nucleus.

Experiment.—Nickel isotopes were produced at ISOLDE/CERN using proton pulses at an energy of 1.4 GeV to cause fragmentation, spallation, and fission inside a uranium carbide target. The target was heated beyond standard operation temperatures up to \sim2200°C to enhance the release of chemically reactive nickel isotopes that have generally quite long release times from the target. Nickel atoms were then ionized by resonant laser ionization using RILIS [13] and accelerated towards the high-resolution mass separator on ground potential by applying an electrostatic potential of approximately 30 and 40 kV to the ion source in a first and a second beam time, respectively. The mass separated ions were injected into the radio-frequency ion beam cooler and buncher ISCIOOL [14] and accumulated for typically 10–100 ms. Extracted ion bunches of 5-μs duration were transported to the collinear laser spectroscopy beam line COLLAPS where the ions were superimposed with a copropagating laser beam. Potassium vapor in a charge-exchange cell [15,16] was used to neutralize the ions. Various excited states of the nickel atoms were populated within this nonresonant process, among them the metastable $3d^54s^1D_3$ level [17] that served as the starting point for laser spectroscopy, performed in the 352.45 nm transition to the $3d^4p^1P_2$ level. Fluorescence photons from spontaneous emission were detected by four photomultiplier tubes and the individual events were recorded with a time-resolving data acquisition system. The laser light was produced using a frequency-doubled single-mode continuous-wave titanium sapphire laser stabilized on a high-resolution wave meter, which was calibrated regularly with a stabilized helium-neon laser. Typical spectra of the isotopes $^{58,60,61,62,64,68}\text{Ni}$ are shown in Fig. 1. All isotopes were measured alternating with the reference isotope ^{60}Ni to compensate for any remaining long-term drifts in the ion velocity or the laser frequency.

Analysis.—Isotope shifts $\delta\nu^{60, A} = \nu^A - \nu^{60}$ for the stable isotopes $^{58,61,62,64}\text{Ni}$ and the radioactive ^{68}Ni were calculated from their respective center frequency ν^A with respect to the center frequency ν^{60} of the reference isotope ^{60}Ni. Results are listed in Table I. Isotope shifts are related to differences in mean-square charge radii $\delta \langle r_c^2 \rangle^{60,A}$ via a field shift factor F and a mass shift factor M according to

$$\delta\nu^{60, A} = \mu M + F \delta \langle r_c^2 \rangle^{60, A},$$

with $\mu = (m_A - m_{60})/(m_A m_{60})$ and m_A being the respective atomic masses. A King-fit analysis was performed using the procedure described in Ref. [18] and based on the

![Figure 1](image-url)
known rms charge radii of the stable nickel isotopes extracted from the combined analysis of muonic atom data and elastic electron scattering provided in Ref. [19]. An x-axis offset of $\alpha = 397$ u fm2 was used to remove the correlation between M and F and the result of the fit is depicted in Fig. 2. The intercept of the line with the new y axis provides $M_{x=397} = 949(4)$ GHz u [corresponding to a mass shift parameter of $M = 1262(32)$ GHz u] and a field shift parameter of $F = -788(82)$ MHz/fm2. The isotope shift of 68Ni puts it on the line at the position indicated by a star and the change in the rms charge radius can be calculated with respect to 66Ni according to

$$\mu^{-1} \delta (r_c^2)^{60,68} = (\mu^{-1} \delta (r_c^2) - M_0) / F + \alpha.$$

The results are listed in Table I. With the rms charge radius of $R_c(^{60}$Ni$) = 3.806(2)$ fm taken from Ref. [19], the charge radius of 68Ni is obtained as $R_c(^{68}$Ni$) = 3.887(3)$ fm.

Discussion

The extracted R_c can be used to benchmark theoretical calculations, to test and expand their reliability and predictive power away from stable nuclei. First principle calculations were recently performed for 48Ca [8], which lead to an improved understanding of the neutron and proton distributions in nuclei, as well as their difference encoded in R_{skin}. The observed correlation between the dipole polarizability α_D and the rms charge radius of 48Ca allowed to narrow down constraints on the dipole polarizability, $\alpha_D = 2.19 - 2.60$ fm3, and on the neutron skin, $R_{\text{skin}} = 0.12 - 0.15$ fm. The latter was found to be considerably smaller than previously thought [8]. The recent Darmstadt-Osaka experimental determination of the dipole polarizability $\alpha_D = 2.07(22)$ fm3 [5] is indeed in good agreement with the theoretical predictions. Subsequently, new calculations have included higher-order coupled-cluster correlations [20], so-called linearized 3 particles–3 holes (3p–3h) correlations. This leads to a reduction of the dipole polarizability and to an improved agreement with the experimental data for 48Ca, while the charge radius is found to not depend sensitively on 3p–3h correlations [21].

Coupled-cluster calculations of α_D based on chiral EFT interactions, initiated in Refs. [8,20–24], have progressed towards heavier, more complex nuclei and have now reached the short-lived 60Ni. Contrary to the stable isotopes, for which inelastic proton scattering was used to experimentally access the dipole polarizability, α_D of 68Ni was determined using Coulomb excitation in inverse kinematics by measuring the invariant mass in the one- and two-neutron decay channels [12]. This result, subsequently refined in Ref. [25], is shown together with our first experimental determination of R_c in Fig. 3. Figure 3 also shows the theoretical results using four different chiral nucleon-nucleon (NN) and three-nucleon (3N) interactions from Ref. [26] [with the same labeling used here: 1.8/2.0, 2.0/2.0, 2.2/2.0 (EM) and 2.0/2.0 (PWA)] as well as the NNLO interaction from Ref. [27]. The Hamiltonians of Ref. [26] are based on a chiral N3LO NN potential evolved to low resolution using the similarity renormalization group combined with N3LO 3N interactions fit to the 4He binding energy and the 4He charge radius. These interactions have been successfully used to study the structure of medium-mass nuclei up to 100Sn (see, e.g., Refs. [28–31]).
NNLO\textsubscript{sat} interaction], while \(R_c \) is changed only mildly (maximally 0.7% for the hardest interaction). Each theoretical point is shown with a corresponding estimate of the theoretical uncertainty, which includes both the residual model-space dependence and the coupled-cluster truncation error, following the protocol explained in Ref. [21]. As expected, the uncertainties are smaller (larger) for soft (hard) interactions. For completeness, the charge radius \(R_c \) is obtained from the point-proton radius \(R_p \) by

\[
R_c^2 = R_p^2 + \langle r_p^2 \rangle + (N/Z) \langle r_n^2 \rangle + (3\hbar^2/4m_p^2c^2) + \langle r_s^2 \rangle_{so},
\]

where \(m_p \) is the proton mass, and \(\langle r_p^2 \rangle = 0.7080(32) \) \cite{32} and \(\langle r_n^2 \rangle = -0.117(4) \) fm\(^2\) \cite{33} are the rms charge radii of a proton and a neutron, respectively, \((3\hbar^2/4m_p^2c^2) = 0.033 \) fm\(^2\) \cite{34} is the relativistic Darwin-Foldy correction and \(\langle r_s^2 \rangle_{so} \) is the spin-orbit correction for \(^{68}\text{Ni} \), which we calculate consistently for each Hamiltonian.

It is interesting to note that the behavior is very similar to that observed for the stable nucleus \(^{48}\text{Ca} \). Theoretical results exhibit a clear correlation between the dipole polarizability and the charge radius both at the singles-and-doubles and triples excitations level. The inclusion of triples excitations, however, alters the slope of this correlation. In Fig. 3, the correlation is highlighted by the linear fit to the calculations and the corresponding blue uncertainty bands, which are chosen to include the full error bars of the individual calculations. Most notably, for the results with singles and doubles excitations, the band does not overlap with the intersection region of the measured \(R_c \) and \(\alpha_D \). When including \(3p\text{--}3h \) correlations, the theoretical band nicely overlaps with the experimental constraints. This shows that \(3p\text{--}3h \) correlations are not negligible, and that state-of-the-art coupled-cluster computations are reliable for this first test of the charge radius and \(\alpha_D \) of the neutron-rich nucleus \(^{68}\text{Ni} \).

Compared to the results \(\alpha_D = 3.60 \) fm\(^3\) obtained recently by Raimondi and Barbieri \cite{35} with the self-consistent Green’s function method using the NNLO\textsubscript{sat} interaction, we obtain a considerably larger value of \(\alpha_D = 4.65(49) \) fm\(^3\) using the same interaction. The reason of the discrepancy could either be due to the different method used, or more likely related to the larger \(\hbar \Omega \) value in Ref. [35]. The central value of our coupled-cluster results are obtained with \(\hbar \Omega = 12 \) MeV, which shows a very nice convergence pattern as a function of the model-space size; while we have observed that larger \(\hbar \Omega \) values exhibit a much slower convergence.

In addition to our \textit{ab initio} calculations, the dipole polarizability of \(^{68}\text{Ni} \) was also studied with nuclear EDFs, which suggested that \(\alpha_D \) is strongly correlated with the neutron skin and this correlation is even stronger when information on the symmetry energy is taken into account [25]. This led to a prediction of the neutron skin \(R_{\text{skin}} = 0.16(4) \) fm [25] of \(^{68}\text{Ni} \). In Table II we list the coupled-cluster results including \(3p\text{--}3h \) corrections for the optimal \(\hbar \Omega \) for the different chiral NN and 3N interactions studied [26,27]. The central values are for the optimal harmonic-oscillator frequency \(\hbar \Omega = 12 \) MeV.

<table>
<thead>
<tr>
<th>Hamiltonian</th>
<th>(\alpha_D)</th>
<th>(R_p)</th>
<th>(R_n)</th>
<th>(R_{\text{skin}})</th>
<th>(R_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8/2.0 (EM)</td>
<td>3.58(18)</td>
<td>3.62(1)</td>
<td>3.82(1)</td>
<td>0.201(1)</td>
<td>3.70(1)</td>
</tr>
<tr>
<td>2.0/2.0 (EM)</td>
<td>3.38(23)</td>
<td>3.69(2)</td>
<td>3.89(2)</td>
<td>0.202(3)</td>
<td>3.77(1)</td>
</tr>
<tr>
<td>2.2/2.0 (EM)</td>
<td>4.04(28)</td>
<td>3.74(2)</td>
<td>3.94(2)</td>
<td>0.203(4)</td>
<td>3.82(2)</td>
</tr>
<tr>
<td>2.0/2.0 (PWA)</td>
<td>4.87(40)</td>
<td>3.97(2)</td>
<td>4.17(3)</td>
<td>0.204(8)</td>
<td>4.05(2)</td>
</tr>
<tr>
<td>NNLO\textsubscript{sat}</td>
<td>4.65(49)</td>
<td>3.93(4)</td>
<td>4.11(5)</td>
<td>0.183(8)</td>
<td>4.00(4)</td>
</tr>
</tbody>
</table>

\[\alpha_D \text{ in fm}^3, R_p, R_n, R_{\text{skin}}, R_c \text{ in fm for } ^{68}\text{Ni} \text{ for the different chiral NN and 3N interactions studied [26,27]. The central values are for the optimal harmonic-oscillator frequency } \hbar \Omega = 12 \text{ MeV.} \]
coupled-cluster calculations including novel triples corrections for a range of chiral NN and 3N interactions. A strong correlation between the charge radius and the dipole polarizability is shown by the theoretical calculations. Our results including the leading $3p-3h$ contributions agree much better with the experimental data compared to the case when triples corrections are neglected. In particular the theoretical correlation band intersects nicely with the measured R_n and α_0 bands. This correlation combined with coupled-cluster calculations of the point-neutron radius and neutron skin of 68Ni allows these to be constrained to $R_n = 3.9-4.1$ and $R_{n\text{skin}} = 0.18-0.20$ fm.

We acknowledge the support of the ISOLDE Collaboration and technical teams and funding from the European Union’s Horizon 2020 programme under Grant Agreement No. 654002. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—ProjektNummer 279384907—SFB 1245, the Collaborative Research Center [The Low-Energy Frontier of the Standard Model (SFB 1044)], the Cluster of Excellence “Precision Physics, Fundamental Interactions, and Structure of Matter” (PRISMA$^+$ EXC 2118/1) funded by DFG within the German Excellence Strategy—ProjektNummer 39083149, the BMBF under Contracts No. 05P18RDCIA, No. 05P18RDFN1, and No. 05P19RDFN1, the FWO (Belgium), GOA 15/010 from KU Leuven, the Office of Nuclear Physics, U.S. Department of Energy, under Grant No. DESC0018223 (NUCLEI SciDAC-4 collaboration), and the National Science Foundation—NSF Grant No. PHY-1520209 (PRISMA$^+$). Computer time was provided by the INTCITe program. The calculations presented in this work were also performed on “Mogon II” at Johannes Gutenberg-Universität in Mainz. This work was also supported by consolidated grants from STFC (UK)—ST/L005670/1, ST/L005794/1, ST/P004423/1, and ST/P004598/1.

* wnoertershaeuser@ikp.tu-darmstadt.de
† Present address: Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
‡ Present address: Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany.

