Higgs self-coupling: *Experimental vision*

Elisabeth Petit
on behalf of the ATLAS and CMS collaborations

Ultimate Precision at Hadron Colliders
2nd of December 2019
Higgs potential: $V(\Phi) = \frac{1}{2} \mu^2 \Phi^2 + \frac{1}{4} \lambda \Phi^4$

Approximation around the v.e.v:

$V(\Phi) \approx \lambda v^2 h^2 + \lambda vh^3 + \frac{1}{4} \lambda h^4$

mass term self-coupling terms

λ known from v.e.v and Higgs mass: $\lambda = \frac{m_H^2}{2 \cdot v^2} \approx 0.13$

BSM effects could change $\lambda \Rightarrow$ define deviation of tri-linear term: $\kappa_\lambda = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}$

- no quartic terms considered here
Self-couplings through di-Higgs measurements
Di-Higgs production at hadronic colliders (1)

- Main production mode: ggF
- Rare process of the Standard Model
 - destructive interference between triangle and box diagrams
 - $\sigma(HH)/\sigma(H) = 0.1\%$

For those results, state of the art NNLO calculation with finite m_t effects at NLO
 - -8% wrt Yellow Report 4, used in previous projections
Di-Higgs production at hadronic colliders (2)

♦ Self-couplings through
 - **total** HH cross section
 - **differential** cross section $d\sigma/dm_{HH}$

![Diagrams showing self-couplings through total and differential cross sections.](diagrams.png)

![Graphs showing HH production at 14 TeV LHC at (N)LO in QCD.](graphs.png)
Di-Higgs production at hadronic colliders (3)

- Sensitivity to κ_λ directly related to the acceptance, so to the m_{HH} shape

- NB: most analyses optimised for $\kappa_\lambda=1$
Many decay channels!

In practice consider channels with $b\bar{b}$ (BR = 59%) to maximise the rate.
Summary of channels/methods for HL-LHC studies:

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbbb</td>
<td>extrapolation</td>
<td>parametric</td>
</tr>
<tr>
<td></td>
<td>Largest BR ☻</td>
<td>Large multijet and tt bkg ☹</td>
</tr>
<tr>
<td>bbττ</td>
<td>extrapolation</td>
<td>parametric</td>
</tr>
<tr>
<td></td>
<td>Sizeable BR ☻</td>
<td>Relatively small bkg ☻</td>
</tr>
<tr>
<td>bbγγ</td>
<td>smearing</td>
<td>parametric</td>
</tr>
<tr>
<td></td>
<td>Small BR ☹</td>
<td>Good diphoton resolution ☻ ☻</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relatively small bkg ☻</td>
</tr>
<tr>
<td>bbVV</td>
<td>parametric</td>
<td>parametric</td>
</tr>
<tr>
<td>(→ lνlν)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large BR ☻</td>
<td>Large bkg ☹</td>
</tr>
<tr>
<td>bbZZ</td>
<td>parametric</td>
<td>parametric</td>
</tr>
<tr>
<td>(→ 4l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very small BR ☹</td>
<td>Very small bkg ☻</td>
</tr>
</tbody>
</table>

Benefit from **performance** work of Technical design reports

New analyses, either
- **extrapolations** from Run-2 analyses
- dedicated studies with **smeared/parametric detector response**, corresponding to pile-up of 200
Run-2 results

ATLAS

- $\sigma_{ggF}^{SM} (pp \to HH) = 33.5 \text{ fb}$
- Expected limit on $\sigma(HH)/\sigma(H) = HH)$: $10*SM$

 - $-5.0 < \kappa_\lambda < 12.0$ at 95% CL

CMS

- Expected limit on $\sigma(HH)$: $12.8*SM$

 - $-7.1 < \kappa_\lambda < 13.6$ at 95% CL
♦ **Upgrades** of ATLAS and CMS to cope with aging, pile-up, radiation
♦ **2017-2019:** >4500 pages of Technical Design Reports
♦ Outcome of TDRs: current resolutions/efficiencies could be kept at HL-LHC!
♦ Example for ATLAS HH $\rightarrow b\bar{b}\gamma\gamma$ analysis
 - Electromagnetic calorimeter
 - Inner Tracker

<table>
<thead>
<tr>
<th></th>
<th>significance [σ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strip TDR</td>
<td>1.05</td>
</tr>
<tr>
<td>LAr TDR</td>
<td>1.29</td>
</tr>
<tr>
<td>Pixel TDR</td>
<td>1.51</td>
</tr>
</tbody>
</table>

♦ Systematic uncertainties: common agreement between ATLAS and CMS
 - performance uncertainties scaled by 0.5 to 1
 - theoretical uncertainties divided by 2
 - MC stat uncertainties neglected
Di-Higgs search, methods

♦ General analysis strategy:
 - candidates mass consistent with SM Higgs boson
 - multivariate methods to reject background
 - use m_{HH} when possible

♦ A few examples:

♦ NB: some inputs or systematics with large unknowns
 - multijet bkg modelling for $HH \rightarrow b\bar{b}b\bar{b}$
 - τ fake-rate
 - …

⇒ room for improvement
Extrapolation from Run-2 analysis
- fit of m_{4j} distribution
- $p_T^{jet} > 40$ GeV, different thresholds tested

Systematics
- dominated by multijet data-driven model
- conservative assumption: Run-2 systematics used

Significance:
1.4/0.61σ without/with syst
SM signal + BSM benchmark points

Resolved and boosted b-jets

- boosted topologies more sensitive to BSM scenarios where high m_{HH} is enhanced

Resolved:

- $p_T > 45$ GeV, different thresholds tested
- BDT against multijet bkg + $t\bar{t}$ and single-Higgs

Small uncertainty considered for multijet background

Significance:

1.2σ wo/syst

0.95σ w/ syst
♦ **Extrapolation** from Run-2 analysis

♦ Three signal regions:
 - $\tau_{\text{lep}} \tau_{\text{had}}$ (Single Lepton Trigger)
 - $\tau_{\text{lep}} \tau_{\text{had}}$ (Lepton Tau Trigger)
 - $\tau_{\text{had}} \tau_{\text{had}}$ (Single Tau Trigger and Di-Tau Trigger)

♦ **BDT output** used as final discriminant
 - binning adapted to higher statistics

♦ Limit on κ_{λ}: LTT category not included and dedicated BDT trained on $\kappa_{\lambda} = 20$

♦ **Different assumptions** for systematics
 - from current to baseline for HL-LHC

♦ **Significance:**
 - $2.5/2.1\sigma$ without/with syst
3 categories: μh, $e h$, τh

Use of a Deep Neural Network
- 27 basic + 21 reconstructed + 4 global features
- deep learning techniques, with optimal data preprocessing, study of the activation functions, and data augmentation

Simultaneous fit of the NN output for the 3 decay channels
- discriminant binned per decay channel via adaptive binning

Significance: $1.6/1.4\sigma$ without/with syst
Dedicated analysis with smearing functions: upgraded detector geometry and performance functions
- $m_{\gamma\gamma}$ resolution ~ 1.6 GeV

Dedicated BDT trained to remove continuum background and main single-Higgs background (ttH)

Limit on κ_λ: use of the $m_{b\bar{b}\gamma\gamma}$ distribution for events with $123 < m_{\gamma\gamma} < 127$ GeV

Systematics: very small impact in general

Significance: $2.1/2.0\sigma$ without/with syst
Dedicated BDT to reject $t\bar{t}H$
- 75% reduction for 90% signal efficiency

Classification of events based on $M_x = m_{jj\gamma\gamma} - m_{\gamma\gamma} - m_{jj} + 250$ GeV into low and high mass categories

MVA event categorisation BDT to separate background and HH signal into medium (MP) and high (HP) purity

Fit of $m_{\gamma\gamma}$ x m_{jj}

Significance: 1.8/1.8σ without/with syst
- difference with ATLAS partly due to $m_{\gamma\gamma}$ resolution
Optimised on WW, but ZZ signal included for the results

Large irreducible backgrounds: \(\bar{t}t \), DY

Neural Network discriminant
- 9 input angular and mass variables
- signal extracted from the NN output (3 categories \(ee \), \(\mu\mu \), \(e\mu \))

Results: \(0.6\sigma \) significance
Very rare but clean final state, yet unexplored at the LHC

Powerful $H \rightarrow 4\ell$ signature \Rightarrow single Higgs dominant background

Select events with $m_{4\ell}$ compatible with m_H

Counting experiment with events around m_H

~1 signal event after selection
 - $S/B \sim 0.1$

Results: 0.4σ significance
Combined results (1)

- **Expected significance** (SM) with and without systematics at HL-LHC

<table>
<thead>
<tr>
<th>Process</th>
<th>ATLAS</th>
<th>CMS</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$HH \to bbbb$</td>
<td>1.4</td>
<td>1.2</td>
<td>0.61</td>
<td>0.95</td>
</tr>
<tr>
<td>$HH \to b\bar{b}\tau\tau$</td>
<td>2.5</td>
<td>1.6</td>
<td>2.1</td>
<td>1.4</td>
</tr>
<tr>
<td>$HH \to b\bar{b}\gamma\gamma$</td>
<td>2.1</td>
<td>1.8</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>$HH \rightarrow b\bar{b}VV(l\nu\nu)$</td>
<td>-</td>
<td>0.59</td>
<td>-</td>
<td>0.56</td>
</tr>
<tr>
<td>$HH \rightarrow b\bar{b}ZZ(4l)$</td>
<td>-</td>
<td>0.37</td>
<td>-</td>
<td>0.37</td>
</tr>
<tr>
<td>combined</td>
<td>3.5</td>
<td>2.8</td>
<td>3.0</td>
<td>2.6</td>
</tr>
</tbody>
</table>

- **4σ** expected with ATLAS+CMS!

- **Measurement of μ (SM signal injected):**
 - $\delta\mu/\mu \sim 25\%$ (30%) without (with) systematics

- **$\mu = 0$ (no SM HH signal) excluded at 95% CL**

- **Measurement of κ:**
 - 68% CI: [0.5; 1.5]
 - 2nd minimum excluded at 99.4% CL thanks to the m_{HH} shape information
♦ Comparison of negative log-likelihood ratios:

- **ATLAS and CMS**

 - **3000 fb⁻¹ (14 TeV)**

 ![Graph showing -2ln(L) vs k_λ](image)

 - **HL-LHC prospects**
 - **-2ln(L)**
 - **k_λ**
 - **95%**
 - **68%**

 - **b±bb±**
 - **b±ττ**
 - **bbVV(lfv)**
 - **bbγγ**
 - **bbZZ⁺(4l)**
 - **ATLAS**
 - **CMS**

 - Difference on 2⁰ minimum mainly from the b±γγ channel:
 - 3 categories of m_{HH} (especially a low-m_{HH} one) to remove the degeneracy around κ_λ=6
 - (while this low-m_{HH} category has no effect around 1)

 - CMS slightly better below 1: b±bb± + other smaller channels
Combined results (3)

- 68% CI, channel by channel
- Dashed line = no ATLAS analysis, using value from CMS (as for Higgs couplings)

\[\kappa \lambda \]

- Measured with a precision of 50%
♦ **Extrapolation** of ATLAS HL-LHC results to HE-LHC
 - scale cross-section to 27 TeV (*4) and luminosity to 15 ab⁻¹ (*5), **no systematic uncertainties**
 - $b\bar{b}\tau\tau$ channel: significance: 10.7σ, precision on κ_λ: 20%
 - $b\bar{b}\gamma\gamma$ channel: significance: 7.1σ, precision on κ_λ: 40%
 - pessimistic because analysis not optimised for measurement of κ_λ

♦ **Phenomenology study for $b\bar{b}\gamma\gamma$: 15% precision on $\kappa_\lambda**
 - realistic detector performance
 - no pile-up considered
 - ($\mu=800-1000$)

♦ **Combination of channels**: κ_λ could be measured with a 68% CI of 10 to 20%
Possible improvements

♦ Analyses extrapolated from Run-2:
 – for the moment not aiming for κ_λ measurement
 (eg no use of m_{HH} categories)
♦ Dedicated HL-LHC analyses:
 – optimised for HH production, not always for κ_λ
 – eg ATLAS vs CMS HH \rightarrow $b\bar{b}\gamma\gamma$
♦ Improvement of background modelling
 – eg ATLAS HH \rightarrow $b\bar{b}b\bar{b}$, significance $1.4\sigma \rightarrow 0.61\sigma$
♦ Improvement of signal yields
 – object efficiencies
 – trigger
♦ Adding new variables and improved MVA techniques (DNN, ...)
Self-couplings through single-Higgs measurements
Single-Higgs, introduction

- Single-Higgs production: Higgs self-interaction only via one-loop corrections (ie two loop-level for ggF)
- κ_λ-dependent corrections to the tree-level cross-sections
 - valid for $|\kappa_\lambda| < 20$
 - production mode
 - eg for $\kappa_\lambda = 2 \sigma(pp\to t\bar{t}H)$ modified by 3%
 - kinematics properties of the event
 - eg p_T^{Higgs} for $t\bar{t}H$ and VH
- Also effects Higgs boson decay BR
Run-2 result using coupling measurements

Combined fit result (κ_λ only variation):

$$\kappa_\lambda = 4.6^{+3.2}_{-3.8} = 4.6^{+2.9}_{-3.5} \text{ (stat.)}^{+1.2}_{-1.2} \text{ (exp.)}^{+0.7}_{-0.5} \text{ (sig. th.)}^{+0.6}_{-1.0} \text{ (bkg. th.)} \text{ [observed]}$$

$$\kappa_\lambda = 1.0^{+7.3}_{-3.8} = 1.0^{+6.2}_{-3.0} \text{ (stat.)}^{+3.0}_{-1.7} \text{ (exp.)}^{+1.8}_{-1.2} \text{ (sig. th.)}^{+1.7}_{-1.1} \text{ (bkg. th.)} \text{ [expected]}$$

Similar sensitivity between single-Higgs and di-Higgs with the current luminosity
Method applied to $\bar{t}tH(\rightarrow \gamma\gamma)$ differential cross-section measurement:

- 68% CI: $-1.9 < \kappa_\lambda < 5.3$ if only κ_λ varied
- First test with experimental “data”, more channels to be added
Global fits of single-Higgs inclusive couplings and \(ttH\) differential measurements
- for HL-LHC and HE-LHC

Different BSM scenarios
- only \(\kappa_\lambda\) can be varied (dotted line)
- EFT framework (solid line)

Different scenarios for systematics (bands)

Biggest impact from diff. cross-section

Improvement of di-Higgs direct measurements for variations of \(\kappa_\lambda\) only

HL-LHC: 68% CI (optimistic systematics):
- \(-0.1 < \kappa_\lambda < 2.3\) if only \(\kappa_\lambda\) varied
- \(-2 < \kappa_\lambda < 3.9\) for global fit
Summary
Summary of HL(HE)-LHC prospects
Conclusion

♦ State-of-the art experimental studies on HH measurements
 - coherent results by ATLAS and CMS
 - went from ~2σ last year to a combined significance of 4σ!
 • first real measurements possible, eg precision on κ_λ: 50%
 - much room for improvement

♦ Nice developments on single-Higgs constrains
 - differential cross-sections, global fits

♦ Estimates of sensitivity at HE-LHC
 - experimental and phenomenology

♦ HL-LHC measurement of the Higgs self-coupling will remain the most precise until the high-energy phase of the next generation of Future Colliders around 2050

♦ More on the global interpretation in the talk by C. Grojean tomorrow
References

♦ Measurement prospects of the pair production and self-coupling of the Higgs boson with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2018-053
♦ Prospects for HH measurements at the HL-LHC, CMS-FTR-18-019
♦ Higgs Physics at the HL-LHC and HE-LHC, CERN-LPCC-2018-04
♦ Constraint of the Higgs boson self-coupling from Higgs boson differential production and decay measurements, ATL-PHYS-PUB-2019-009
♦ Constraints on the Higgs boson self-coupling from the combination of single-Higgs and double-Higgs production analyses performed with the ATLAS experiment, ATLAS-CONF-2019-049
♦ Expected performance of the ATLAS detector at the High-Luminosity LHC, ATL-PHYS-PUB-2019-005
♦ Expected performance of the physics objects with the upgraded CMS detector at the HL-LHC, CMS-NOTE-2018-006
♦ Combination of searches for Higgs boson pairs in pp collisions at $s\sqrt{=}13$ TeV with the ATLAS detector HDBS-2018-58
♦ Combination of searches for Higgs boson pair production in proton-proton collisions at $\sqrt{s}= 13$ TeV HIG-17-030
Di-Higgs production

- Only ggF production considered at present
Single-Higgs couplings (1)

♦ Higgs self-interaction via one-loop corrections of the single-Higgs production
 - κ_λ-dependent corrections to the tree-level cross-sections

♦ pp colliders:

 ex. for $\kappa_\lambda = 2$:
 - $\sigma(pp \to t\bar{t}H)$ modified by 3%
 - $\sigma(ee \to ZH)$ modified by 1%
Single-Higgs couplings (2)

♦ More global view: SMEFT\textsubscript{ND}

♦ Deformation of the single-Higgs + EW processes:

\[
\text{SMEFT}_{\text{ND}} \equiv \left\{ \delta m, c_{gg}, \delta c_{\gamma \gamma}, c_{\gamma Z}, c_{ZZ}, c_{\square}, \delta y_t, \delta y_c, \delta y_b, \delta y_\tau, \delta y_\mu, \lambda_\gamma \right\} \\
+ \left\{ (\delta g_{\lambda}^{Z_u})_{q_i}, (\delta g_{\lambda}^{Z_d})_{q_i}, (\delta g_{\lambda}^{Z_\ell})_{\ell}, (\delta g_{\lambda}^{Z_{\ell \ell}})_{q_i}, (\delta g_{\lambda}^{Z_{\ell \ell}})_{\ell_i}, (\delta g_{\lambda}^{Z_{\ell \ell}})_{\ell} \right\} \quad q_1 \neq q_3, \ell = e, \mu, \tau
\]

+ correction to the trilinear Higgs self-coupling: \(\delta \kappa_\lambda = \kappa_\lambda - 1 \)

♦ Can also consider the effect of \(\delta \kappa_\lambda \) on the other parameters

- a few examples:

![Higgs couplings variation along the flat direction](1704.01953)

- could also affect EW precision observables at NNLO
Di-Higgs at Future Colliders

Graph:

- HL-LHC
- HE-LHC
- FCC-hh

Legend:

- σ_{HHC} (fb)
- \sqrt{s} [TeV]

Axes:

- σ [fb]
- \sqrt{s} [GeV]

Points:

- FCC-ee, ILC, CECP
- FCC-ee, ILC, CLIC
- CLIC

Curves:

- ZHH
- HH$\nu_e\bar{\nu}_e$
Di-Higgs production: ee colliders

- **Main production modes:** \(ZHH\) and \(\nu\bar{\nu}HH\)
 - \(ZHH\)
 - VBF \(\nu\bar{\nu}HH\)

- **Self-couplings through HH cross-section at different \(\sqrt{s}\) + production modes + \(m_{HH}\)**
 - \(ZHH\) stronger constraints for \(\kappa_\lambda > 1\)
 - \(\nu\bar{\nu}HH\) stronger constraints for \(\kappa_\lambda < 1\)
HL-LHC, ‘alternative’ methods

- HH→b¯bWW(→lllv):
 Introduce two new variables
 - Topness (T): degree of consistency with di-lepton tt production
 - Higgsness (H): compatibility with Higgs and W masses

- HH→b¯bγγ:
 Bayesian optimisation and BDT compared to cut-based

- Could enhance the significance from 0.6 to 1.4-3.0σ
 - effect of pile-up on those variables?

- No pile-up included, but shows the potential of sophisticated techniques: could achieve up to 4σ
 - illustrated in the YR with ATLAS and CMS using MVA techniques
6 HOW TO APPROACH SYSTEMATICS

* The large HL-LHC dataset will enable accurate measurements and unprecedented sensitivity to very rare phenomena.

* In several analyses **systematic uncertainties will become a limiting factor**

* Several sources of systematics to consider:
 - Detector driven
 - Data statistics in control regions
 - Theory normalization and modeling
 - Luminosity
 - Method uncertainties
 - MC statistics

* Synergy of ATLAS and CMS in many physics projections and complexity of the problem required development of a **common set of guidelines**

 * Focus on experimental systematics that are most important for the projection studies we need (can't be comprehensive!)
 * Jet Energy Scale/Resolution, MET, B-tagging, Tau-ID, and many more...

* Evaluation of theory uncertainties improvement
7 COMMON GUIDING PRINCIPLES FOR YR18

* Statistics-driven sources: data $\rightarrow \sqrt{E}$, simulation $\rightarrow 0$
 * account for larger data sample statistics available
 * to better understand full potential of HL-LHC
* Theory uncertainties typically halved
 * applies to both normalization (x-sec) and modeling
 * due to higher-order calculation and PDF improvements
* Uncertainties on methods kept as latest published results
 * Trigger thresholds same or better(lower) than current
 * assumption that pile-up effects are compensated by detector upgrades improvement and algorithmic developments
* Intrinsic detector limitations stay ~constant
 * usage of full simulation tools for detailed analysis of expected performance, thanks to the large effort for TDRs preparation
 * detector understanding and operational experience may compensate for e.g. detector aging
 * harmonized definition of « floor » values for experimental systematics
* Luminosity uncertainty 1%
Whenever feasible present results as

\[\text{value} \pm \text{stat} \pm \text{syst}_\text{exp} \pm \text{syst}_\text{theory} \pm \text{syst}_\text{lumi} \]

Baseline scenario defined as:

* **YR18(S2):** based on synchronised estimates of ultimate performance for experimental and theory uncertainties, and applying guidelines as in previous slide

Summary (simplified) table of some values of experimental systematics harmonized between ATLAS & CMS

<table>
<thead>
<tr>
<th>Object</th>
<th>WP</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muons</td>
<td>reco+ID(+ISO)</td>
<td>0.1%(0.5%)</td>
</tr>
<tr>
<td>Electrons</td>
<td>reco+ID+ISO</td>
<td>0.5%</td>
</tr>
<tr>
<td>Taus</td>
<td>reco+ID+ISO</td>
<td>5%(as in Run2)</td>
</tr>
<tr>
<td>B-jet tag</td>
<td>30<pt<300GeV (pt>300GeV)</td>
<td>~1%(2-6%)</td>
</tr>
<tr>
<td>c-jet tag</td>
<td></td>
<td>~2%</td>
</tr>
<tr>
<td>Light jets</td>
<td>L/M/T WP</td>
<td>5/10/15%</td>
</tr>
<tr>
<td>JES</td>
<td>abs/rel scale</td>
<td>0.1-0.2%(0.1-0.5%)</td>
</tr>
<tr>
<td>JEC</td>
<td>Pile-Up</td>
<td>0-2%</td>
</tr>
<tr>
<td>JEC</td>
<td>Flavor</td>
<td>0.75%</td>
</tr>
<tr>
<td>Integrated Luminosity</td>
<td></td>
<td>1%</td>
</tr>
</tbody>
</table>