$B_s^0 \rightarrow J/\psi \, K^+K^-$ and other time-dependent analyses at LHCb

Katya Govorkova
on behalf of the LHCb Collaboration

Implications Workshop
16 October 2019
\[\sin(2\beta)\]

- \(B^0 \rightarrow \psi(2S) K_s\)
 - Run1 JHEP 11 (2017) 170
- \(B^0 \rightarrow J/\psi K_s\)
 - Run1 PRL 115 (2015) 031601
- \(B^0 \rightarrow D^+ D^-\)
 - Run1 PRL 117 (2016) 261801
- \(B^0 \rightarrow D^{\ast\pm} D^{\mp}\)
 - Run1+2 LHCb-PAPER-2019-036 in preparation

\[\phi_s\] from penguins

- \(B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)\)
 - Run1 JHEP 03 (2018) 140
- \(B_s^0 \rightarrow \phi \phi\)
 - Run1+2(15,16) arXiv:1907.10003
- \(B_s^0 \rightarrow \phi \gamma\)
 - Run1 PRL 123 (2019) 081802

\[\gamma\]

- \(B_s^0 \rightarrow D_s^{\ast\mp} K^\pm\)
 - Run1 JHEP 06 (2015) 130
- \(B_s^0 \rightarrow D_s K\)
 - Run1 JHEP 03 (2018) 059
- \(B^0 \rightarrow D^{\mp} \pi^\pm\)
 - Run2(15+16) JHEP 06 (2018) 084

\[\alpha\]

- \(B^0_{(s)} \rightarrow h^\pm h^{\mp}\)
 - Run1 PRD 98 (2018) 032004

\[\phi_s\]

- \(B_s^0 \rightarrow D_s D_s\)
 - Run1 PRL 113 (2014) 211801
- \(B_s^0 \rightarrow \psi(2S) \phi\)
 - Run1 PHYS. LETT. B762 (2016) 253
- \(B_s^0 \rightarrow J/\psi K^+ K^-\) high mass
 - Run1 JHEP 08 (2017) 037
- \(B_s^0 \rightarrow J/\psi K^+ K^-\)
 - Run2(15+16) EPJC 79 (2019) 706
- \(B_s^0 \rightarrow J/\psi \pi^+ \pi^-\)
 - Run2(15+16) to appear in PLB 797 (2019)

*incomplete overview
Tree dominated decays of $B^0_\text{(s)} \left(\bar{B}^0_\text{(s)} \right)$ via $b \to c\bar{c}s$ transition
CP violation in interference between direct decay and decay after mixing
Example of time-dependent CPV

Tree dominated decays of $B^0_{(s)} (\bar{B}^0_{(s)})$ via $b \rightarrow c\bar{c}s$ transition

CP violation in interference between direct decay and decay after mixing

$\phi_{d/s} = \phi_{\text{mix}} - 2\phi_{\text{dec}}$

+ Weak phase
Tree dominated decays of $B^0_s (\bar{B}^0_s)$ via $b \to c\bar{c}s$ transition

CP violation in interference between direct decay and decay after mixing

$$\phi_{d/s} = \phi_{\text{mix}} - 2\phi_{\text{dec}}$$
Tree dominated decays of $B^0_{(s)} (\bar{B}^0_{(s)})$ via $b \to c\bar{c}s$ transition
CP violation in interference between direct decay and decay after mixing

$\phi_{d/s} = \phi_{\text{mix}} - 2\phi_{\text{dec}}$
Measurement of CP violation

Master equations for time-dependent decay rates of neutral mesons

\[
\frac{d\Gamma_{B_s^0 \rightarrow f}(t)}{dt} e^{-\Gamma_{s}t} = \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) \left[\cosh \left(\frac{\Delta \Gamma_{s}t}{2} \right) + A_f \Delta \Gamma \sinh \left(\frac{\Delta \Gamma_{s}t}{2} \right) + C_f \cos (\Delta m_s t) - S_f \sin (\Delta m_s t) \right]
\]

\[
\frac{d\bar{\Gamma}_{B_s^0 \rightarrow f}(t)}{dt} e^{-\bar{\Gamma}_{s}t} = \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) \left[\cosh \left(\frac{\Delta \Gamma_{s}t}{2} \right) + A_f \Delta \Gamma \sinh \left(\frac{\Delta \Gamma_{s}t}{2} \right) - C_f \cos (\Delta m_s t) + S_f \sin (\Delta m_s t) \right]
\]

where CP violation parameters

\[
A_f^{\Delta \Gamma} = \frac{-2 \Re(\lambda_f)}{1 + |\lambda_f|^2}
\]

\[
C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}
\]

\[
S_f = \frac{2 \Im(\lambda_f)}{1 + |\lambda_f|^2}
\]
Master equations for time-dependent decay rates of neutral mesons

\[
\begin{align*}
\frac{d\Gamma_{B^0_s \to f}(t)}{dt} e^{-\Gamma_{st}} &= \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) \left[\cosh \left(\frac{\Delta \Gamma_{st}}{2} \right) + A_f^\Delta \Gamma \sinh \left(\frac{\Delta \Gamma_{st}}{2} \right) + C_f \cos (\Delta m_s t) - S_f \sin (\Delta m_s t) \right] \\
\frac{d\Gamma_{\bar{B}^0_s \to f}(t)}{dt} e^{-\Gamma_{st}} &= \frac{1}{2} |A_f|^2 \left| \frac{p}{\bar{q}} \right|^2 (1 + |\lambda_f|^2) \left[\cosh \left(\frac{\Delta \Gamma_{st}}{2} \right) + A_f^\Delta \Gamma \sinh \left(\frac{\Delta \Gamma_{st}}{2} \right) - C_f \cos (\Delta m_s t) + S_f \sin (\Delta m_s t) \right]
\end{align*}
\]

where CP violation parameters

\[
\begin{align*}
A_f^\Delta \Gamma &= \frac{-2R(\lambda_f)}{1 + |\lambda_f|^2} \\
C_f &= \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \\
S_f &= \frac{2 \Im \lambda_f}{1 + |\lambda_f|^2}
\end{align*}
\]

experimental effects that have to be taken care of in CPV measurements

\[
pdf \propto \mathcal{E}(t) \left(\frac{d\Gamma}{dt} \otimes G(t | \sigma_t) \right) (1 - 2\omega)
\]

\[
\omega \quad \text{mistag probability of flavour tagging} \\
\mathcal{E} \quad \text{efficiency as a function of observables} \\
\sigma_t \quad \text{decay time resolution}
\]
CP-violating phase ϕ_s

- Sensitive probe of New Physics in B^0_s mixing
- Precise test of Standard Model through the measurement of ϕ_s

\[\phi_s^{\text{SM}} \approx -2 \arg \left(\frac{V_{ts} V_{tb}^*}{V_{cs} V_{cb}^*} \right) = -0.03686^{+0.00096}_{-0.00068} \text{ rad} \]

\(\text{If } \phi_s^{\text{exp}} \neq \phi_s^{\text{SM}} \)

New Physics!

\[B_s^0 \rightarrow J/\psi K^- K^+ \text{ and other time-dependent analyses at LHCb} \]

16 October 2019
CP-violating phase ϕ_s

- Sensitive probe of New Physics in B^0_s mixing
- Precise test of Standard Model through the measurement of ϕ_s

Access to penguin contribution with SU(3) counterparts not suppressed relative to tree level

$B^0_s \to J/\psi \bar{K}^*0$
Run1 JHEP 11 (2015) 082

$B^0 \to J/\psi \pi^+\pi^-$
Run1 PHYS. LETT. B742 (2015) 38

$B^0_s \to J/\psi K^0_s$
Run1 JHEP 06 (2015) 131

Assuming contribution from penguins is negligible

$$\phi_s^{SM} \approx -2 \arg \left(\frac{V_{ts} V_{tb}^*}{V_{cs} V_{cb}^*} \right) = -0.03686^{+0.00096}_{-0.00068} \text{ rad}$$

[CKM fitter]
CP-violating phase ϕ_s

- Sensitive probe of New Physics in B^0_s mixing
- Precise test of Standard Model through the measurement of ϕ_s

$B^0_s \rightarrow D_s D_s$
Run1 PRL 113 (2014) 211801

$B^0_s \rightarrow \psi(2S) \phi$
Run1 PHYS. LETT. B762 (2016) 253

$B^0_s \rightarrow J/\psi K^+K^-$ high mass
Run1 JHEP 08 (2017) 037

$B^0_s \rightarrow J/\psi K^+K^-$
Run2(15+16) EPJC 79 (2019) 706

$B^0_s \rightarrow J/\psi \pi^+\pi^-$
Run2(15+16) to appear in PLB 797 (2019)

\[
\phi_s^{SM} \approx -2 \arg \left(\frac{V_{ts} V_{tb}^*}{V_{cs} V_{cb}^*} \right) = -0.03686^{+0.00096}_{-0.00068} \text{ rad}
\]
Measurement of ϕ_s at LHCb
Measurement of ϕ_s at LHCb

Inside the VELO

B^0_s flies ~ 1 cm

$p \rightarrow J/\psi \rightarrow \mu^+ \mu^-$

$B^0_s \rightarrow J/\psi K^+ K^-$ and other time-dependent analyses at LHCb
Measurement of ϕ_s at LHCb

Inside the VELO

J/ψ is produced at the interaction point, and B^0_s decays nearby.

B^0_s flies ~ 1 cm

Helicity angles formalism

$B^0_s \rightarrow J/\psi K^+ K^-$ and other time-dependent analyses at LHCb

16 October 2019
Analyses strategy

\[B_s^0 \rightarrow J/\psi \ K^+K^- \]
EPJC 79 (2019) 706

\[B_s^0 \rightarrow J/\psi \ \pi^+\pi^- \]
To appear in PLB 797 (2019)

Using 2015 (0.3 fb^{-1}) and 2016 (1.6 fb^{-1}) data
measure \(\phi_s \), |\(\lambda \)| and
Analyses strategy

\[B^0_s \rightarrow J/\psi \ K^+K^- \]
EPJC 79 (2019) 706

\[B^0_s \rightarrow J/\psi \ \pi^+\pi^- \]
To appear in PLB 797 (2019)

Using 2015 (0.3 fb\(^{-1}\)) and 2016 (1.6 fb\(^{-1}\)) data
measure \(\phi_s \), \(|\lambda| \) and
\[\Delta \Gamma_s \text{ and } \Gamma_s - \Gamma_{B^0} \]
to test the Heavy Quark Expansion
prediction of \(\Gamma_s / \Gamma_{B^0} = 1.0006 \pm 0.0025 \) [ref]
Analyses strategy

<table>
<thead>
<tr>
<th>$B^0_s \to J/\psi K^+ K^-$</th>
<th>$B^0_s \to J/\psi \pi^+ \pi^-$</th>
</tr>
</thead>
</table>

Using 2015 (0.3 fb$^{-1}$) and 2016 (1.6 fb$^{-1}$) data
measure ϕ_s, $|\lambda|$ and
$\Delta \Gamma_s$ and $\Gamma_s - \Gamma_{B^0}$
to test the Heavy Quark Expansion
prediction of $\Gamma_s / \Gamma_{B^0} = 1.0006 \pm 0.0025$ [ref]

$\Gamma_H - \Gamma_{B^0}$
since the final state is almost entirely CP-odd
Analyses strategy

\[B^0_s \rightarrow J/\psi \ K^+K^- \]

EPJC 79 (2019) 706

\[B^0_s \rightarrow J/\psi \ \pi^+\pi^- \]

To appear in *PLB 797 (2019)*

Using 2015 (0.3 fb\(^{-1}\)) and 2016 (1.6 fb\(^{-1}\)) data

- measure \(\phi_s \), \(|\lambda| \) and \(\Delta \Gamma_s \) and \(\Gamma_s - \Gamma_{B^0} \)
- to test the Heavy Quark Expansion prediction of \(\Gamma_s / \Gamma_{B^0} = 1.0006 \pm 0.0025 \) [ref]

\[\Gamma_h - \Gamma_{B^0} \]

since the final state is almost entirely CP-odd

Simultaneous fit to the decay time and three helicity angles
Analyses strategy

\[\mathcal{B}^0_s \rightarrow \psi K^+ K^- \]

EPJC 79 (2019) 706

\[\mathcal{B}^0_s \rightarrow \psi \pi^+ \pi^- \]

To appear in *PLB 797 (2019)*

Using 2015 (0.3 fb\(^{-1}\)) and 2016 (1.6 fb\(^{-1}\)) data
measure \(\phi_s \), \(|\lambda| \) and
\(\Delta \Gamma_s \) and \(\Gamma_s - \Gamma_{B^0} \)
to test the Heavy Quark Expansion
prediction of \(\Gamma_s / \Gamma_{B^0} = 1.0006 \pm 0.0025 \) [ref]

Simultaneous fit to the decay time and three helicity angles
in 6 \(m(K^+ K^-) \) bins

Gamma H - Gamma B^0 since the final state is almost entirely CP-odd
Analyses strategy

$B^0_s \rightarrow J/\psi \, K^+K^-$
EPJC 79 (2019) 706

$B^0_s \rightarrow J/\psi \, \pi^+\pi^-$
To appear in PLB 797 (2019)

Using 2015 (0.3 fb$^{-1}$) and 2016 (1.6 fb$^{-1}$) data
measure ϕ_s, $|\lambda|$ and $\Delta \Gamma_s$ and $\Gamma_s - \Gamma_{B^0}$
to test the Heavy Quark Expansion prediction of $\Gamma_s / \Gamma_{B^0} = 1.0006 \pm 0.0025$ [ref]

Simultaneous fit to the decay time and three helicity angles
in 6 $m(K^+K^-)$ bins

\[\text{Yields}/(15 \text{ MeV}) \]

LHCb

Data and fit

10^0, 10^1, 10^2, 10^3

0.5, 1, 1.5, 2

ϕ contribution

Katya Govorkova

$B^0_s \rightarrow J/\psi \, K^+K^-$ and other time-dependent analyses at LHCb

16 October 2019

8
Measurement of ϕ_s

- Selection
- Decay time resolution
- Flavour tagging
- Decay time efficiency
- Selection efficiency (Ω)

TD fit for

ϕ_s $|\lambda|$ $\Delta\Gamma_s$ $\Gamma_{s/H} - \Gamma_{B^0}$
Measurement of ϕ_s

TD fit for

$$\phi_s \ |\lambda| \ \Delta \Gamma_s \ \Gamma_{s/H} - \Gamma_{B^0}$$

Selection

Decay time resolution

Flavour tagging

Decay time efficiency

Selection efficiency (Ω)
Selection and mass fit

$B_s^0 \rightarrow J/\psi K^+K^-$

EPJC 79 (2019) 706

$B_s^0 \rightarrow J/\psi \pi^+\pi^-$

To appear in PLB 797 (2019)

Boosted decision tree is trained to select signal candidates

$$\sigma^{-1}(\phi_s) \sim \sqrt{N} Q_{\text{eff}}^{1/2} e^{-\frac{\sigma^2 \Delta m^2}{2}}$$
Selection and mass fit

\[B^0_s \rightarrow J/\psi K^+K^- \]
\[\text{EPJC 79 (2019) 706} \]

\[B^0_s \rightarrow J/\psi \pi^+\pi^- \]
To appear in \[PLB 797 (2019) \]

Boosted decision tree is trained to select signal candidates

\[\sigma^{-1}(\phi_s) \sim \sqrt{N} Q_{\text{eff}}^{1/2} e^{-\frac{\sigma^2 \Delta m^2}{2}} \]

\[N(B^0_s \rightarrow J/\psi K^+K^-) \approx 117 \ 000 \]

\[N(B^0_s \rightarrow J/\psi \pi^+\pi^-) \approx 33 \ 530 \]
Measurement of ϕ_s

TD fit for ϕ_s, $|\lambda|$, $\Delta \Gamma_s$, $\Gamma_{s/H} - \Gamma_{B^0}$

- Selection
- Decay time resolution
- Flavour tagging
- Selection efficiency (Ω)
- Decay time efficiency
Decay time resolution

\[\sigma_{eff} = 45.5 \text{ fs} \]

\[\sigma_{eff} = 41.5 \text{ fs} \]

\[\sigma^{-1}(\phi_s) \sim \sqrt{N} Q_{eff}^{1/2} e^{-\frac{\sigma^2 \Delta m^2}{2}} \]

Per-candidate decay time error (\(\delta_t\)) is calibrated using prompt J/\(\psi\) sample

\[\sigma_{eff} = \sqrt{\frac{-2}{\Delta m_s^2}} \ln D, \quad D = \sum_{i=1}^{3} f_i e^{-\sigma^2 \Delta m_s^2 / 2} \]

In each bin of \(\delta_t\) perform fit for \(\sigma_{eff}\)

Katya Govorkova
B\(^0_s\)→J/\(\psi\) K\(^+\)K\(^-\) and other time-dependent analyses at LHCb

16 October 2019
Measurement of ϕ_s

- Selection
- Decay time resolution
- Flavour tagging
- TD fit for ϕ_s, $|\lambda|$, $\Delta \Gamma_s$, $\Gamma_{s/H} - \Gamma_{B^0}$
- Selection efficiency (Ω)
- Decay time efficiency
Selection efficiency

$B^0_s \to J/\psi \ K^+K^-$

EPJC 79 (2019) 706

$B^0_s \to J/\psi \ \pi^+\pi^-$

To appear in PLB 797 (2019)

Data-driven approach using $B^0 \to J/\psi \ K^*(892)$
Method is verified with B^0 and B^+

$$
\varepsilon_{B^0_{\text{data}}}(t) = \varepsilon_{B^0_{\text{data}}}(t) \times \frac{\varepsilon_{B^0_{\text{sim}}}(t)}{\varepsilon_{B^0_{\text{sim}}}(t)}
$$
Selection efficiency

$B^0_s \to J/\psi \, K^+ K^-$

EPJC 79 (2019) 706

$B^0_s \to J/\psi \, \pi^+ \pi^-$

To appear in PLB 797 (2019)

Data-driven approach using $B^0 \to J/\psi \, K^*$(892)

Method is verified with B^0 and B^+

Kinematic selection and detector acceptance are causing non uniform efficiency as function of decay angles

- angular distribution in MC / expected without acceptance effect
 - fourth-order polynomial parameterisation
Measurement of ϕ_s

TD fit for ϕ_s, $|\lambda|$, $\Delta \Gamma_s$, $\Gamma_{s/H} - \Gamma_{B^0}$

- Selection
- Decay time resolution
- Selection efficiency (Ω)
- Decay time efficiency
- Flavour tagging
Flavour tagging

\[\mathcal{B}_s^0 \rightarrow \Upsilon K^+K^- \]
EPJC 79 (2019) 706

\[\mathcal{B}_s^0 \rightarrow \Upsilon \pi^+\pi^- \]
To appear in PLB 797 (2019)

\[\sigma^{-1}(\phi_s) \sim \sqrt{N} \mathcal{Q}_{\text{eff}}^{1/2} e^{-\frac{\sigma_t^2 \Delta m^2}{2}} \]

The effective tagging power is defined as \(\mathcal{Q}_{\text{eff}} = \epsilon_{\text{tag}} (1 - 2\omega)^2 \)

where \(\epsilon_{\text{tag}} \) is tagging efficiency and \((1 - 2\omega)^2 \) is dilution

In Run1 \(\mathcal{Q}_{\text{eff}} \approx 3.73 \% \)

\[\mathcal{Q}_{\text{eff}} = 4.73 \pm 0.34 \% \]

In Run1 \(\mathcal{Q}_{\text{eff}} \approx 3.89 \% \)

\[\mathcal{Q}_{\text{eff}} = 5.06 \pm 0.38 \% \]
Measurement of ϕ_s

TD fit for

$\phi_s \ |\lambda| \ \Delta\Gamma_s \ \Gamma_{s/H} - \Gamma_{B^0}$

- Selection
- Decay time resolution
- Flavour tagging
- Decay time efficiency
- Selection efficiency (Ω)
Combination of LHCb results on ϕ_s

$$\phi_s = -0.041 \pm 0.025 \text{ [rad]}$$
$$|\lambda| = 0.993 \pm 0.010$$
$$\Delta \Gamma_s = 0.0816 \pm 0.0048 \text{ [ps}^{-1}]$$
$$\Gamma_s = 0.6562 \pm 0.0021 \text{ [ps}^{-1}]$$

ϕ_s 0.1σ from SM
consistent with Standard Model

ϕ_s 1.6σ from 0
consistent with no CPV in interference between direct decay and after mixing

$|\lambda|$ consistent with 1 within 0.7σ
consistent with no direct CPV

Γ_s/Γ_{B^0} consistent with HQE prediction within 1σ

Figure:
- **Legend:**
 - $D_s^-D_s^+$ 3 fb^{-1}
 - $J/\psi K^+K^-$ 4.9 fb^{-1}
 - $J/\psi K^+K^-$ high mass 3 fb^{-1}

Shade Colors:
- SM
- Combined LHCb

Contour Levels:
- 68% CI contours ($\Delta \log L = 1.15$)

References:
- EPJC 79 (2019) 706

Note:
- This slide summarizes the results from LHCb experiment measurements related to ϕ_s and their implications compared to Standard Model predictions.
The decay $B^0_s \rightarrow J/\psi \phi$ is the B^0_s analogue of the decay $B^0 \rightarrow J/\psi K^0_S$, with the spectator d-quark replaced by an s-quark. However, there are four major differences:

I. $\text{V}_{ts} \neq \text{V}_{td}$. Since the spectator d-quark is replaced by an s-quark, the CKM-element responsible for the CP-asymmetry (in the Wolfenstein parameterization) is now V_{ts}, instead of V_{td}, see Fig. 4.4. In contrast to V_{td}, the imaginary part of V_{ts} is no longer of comparable size as the real part, see Eqs. (2.10-2.11), and the predicted CP asymmetry is therefore small, $\arg(\text{V}_{ts}) \sim \eta \lambda^2$.

II. No K-oscillations. The final state, containing the mesons J/ψ and ϕ, is the same for the B^0_s and the \bar{B}^0_s-meson, and hence we do not need the extra K-oscillation step as in the B^0 system.

III. $\Delta \Gamma \neq 0$. In contrast to the B^0 case, the B^0_s-system has non-vanishing $\Delta \Gamma$. This is caused by the existence of a final state common to B^0_s and \bar{B}^0_s, with a large branching fraction around 5%, namely the CP-eigenstate $D_{\pm}^s (\ast) D_{\mp}^s (\ast)$. Since this is a CP-eigenstate with eigenvalue +1, this decay channel is only accessible for the CP-even eigenstate B^H_s, and not for B^L_s. Hence, the different lifetime for B^H_s and B^L_s with a predicted value of $\Delta \Gamma / \Gamma \sim 0.1$.

IV. Vector-vector final state. The final state now contains two vector-particles with spin-1. As a result, the final state is not a pure CP-eigenstate, in contrast to $B^0 \rightarrow J/\psi K^0$. The spin of the final state particles J/ψ and ϕ can be pointing parallel, $W_s u, c, t \rightarrow W_s u, c, t$.

Measurement of $\phi_s^{SS\bar{s}(d\bar{d}/\gamma)}$

Dominated by penguin $b \rightarrow ss\bar{s}(dd/\gamma)$ transition

In the first order

$$\phi_s^{SM} \propto \arg \left(\frac{V_{ts} V_{*tb}}{V_{*ts} V_{tb}} \frac{V_{*ts} V_{tb}}{V_{*ts} V_{*tb}} \right) = 0$$

$B^0_s \rightarrow (K^+ \pi^-)(K^- \pi^+)$
Run1 JHEP 03 (2018) 140

$B^0_s \rightarrow \phi \phi$
Run1+2(15,16) arXiv:1907.10003

$B^0_s \rightarrow \phi \gamma$
Run1 PRL 123 (2019) 081802
\(\phi_s \) from \(b \to s\bar{s}(\gamma) \) transition

\begin{align*}
\mathbf{B}_s^0 &\to \varphi \gamma \\
\mathbf{B}_s^0 &\to (K^+\pi^-)(K^-\pi^+) \\
\mathbf{B}_s^0 &\to \varphi \varphi
\end{align*}

- Based on Run1 (3 fb\(^{-1}\)) dataset
- Based on Run1 (3 fb\(^{-1}\)), 2015 (0.3 fb\(^{-1}\)) and 2016 (1.6 fb\(^{-1}\)) dataset

The SM predictions for the \(S, C \) and \(A \) in \(\mathbf{B}_s^0 \to \varphi \gamma \) are close to zero [ref]

\[
\begin{align*}
S_{\varphi\gamma} &= 0.43 \pm 0.30 \pm 0.11 \\
C_{\varphi\gamma} &= 0.11 \pm 0.29 \pm 0.11 \\
A_{\varphi\gamma}^\Delta &= -0.67^{+0.37}_{-0.41} \pm 0.17
\end{align*}
\]

\(f_L = 0.208 \pm 0.032 \pm 0.046 \)

Complimentary search for new \(\mathbf{B}_s^0 \) decay mode

\(\mathcal{B}(\mathbf{B}_s^0 \to \varphi\varphi) < 2.7 \times 10^{-8} \) at 90\% CL

\[
\begin{align*}
\phi_s^{s\bar{s}d} &= -0.10 \pm 0.13 \pm 0.14 \text{ [rad]} \\
|\lambda| &= 1.035 \pm 0.034 \pm 0.089 \\
\phi_s^{s\bar{s}s} &= -0.073 \pm 0.115 \pm 0.027 \text{ [rad]} \\
|\lambda| &= 0.99 \pm 0.05 \pm 0.01
\end{align*}
\]
Decays of B^0 dominated by tree $b \to c\bar{s}(d)$ transition

$$\sin(2\beta)^{\text{SM}} = \sin 2 \arg \left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*} \right) = 0.708^{+0.013}_{-0.010} \quad \text{[CKM fitter]}$$

Figure 4.4: The two interfering diagrams of the decay $B^0 \to \psi(2S) K_s$.

Results

- $B^0 \to \psi(2S) K_s$
 - Run1: JHEP 11 (2017) 170
- $B^0 \to J/\psi K_s$
 - Run1: PRL 115 (2015) 031601
- $B^0 \to D^+ D^-$
 - Run1: PRL 117 (2016) 261801
- $B^0 \to D^{*\pm} D^{\mp}$
B^0 \to D^*\pm D^\mp

Based on full Run1 (3 fb^{-1}) and Run2 (6 fb^{-1}) dataset
Result is consistent with sin(2\beta) measured in b \to c\bar{c}s

B^0 \to D^*\pm D^\mp with D^*\pm \to D^0\pi^\pm and D^\mp \to K^\mp \pi^+ \pi^-

D^0 is reconstructed in two modes
studied separately
D^0 \to K^- \pi^+
D^0 \to K^- \pi^+ \pi^- \pi^+

LHCb Preliminary

D^*\!\!\to D^+

D^*\!\!\to D^-

N_{\text{sig}} \sim 6000

\begin{align*}
\text{Candidates} / (6 \text{ MeV/c}^2) & \\
\text{m}_{D^\pm D^\mp} [\text{MeV/c}^2] & \\
0 & 200 \\
200 & 400 \\
400 & 600 \\
600 & 800 \\
800 & 1000 \\
1000 & 1200 \\
\end{align*}

\begin{align*}
N_{\text{Total}} & \\
N_{B^0 \to D^*\pm D^\mp} & \\
N_{\text{Comb. bkg.}} & \\
\end{align*}

\begin{align*}
N(\overline{B^0} \to D^*\pm D^\mp) & \\
N(\overline{B^0} \to D^*\pm D^\mp) & \\
N(\overline{B^0} \to D^*\pm D^\mp) & \\
\end{align*}

\begin{align*}
\text{decay time [ps]} & \\
2 & 4 & 6 & 8 & 10 \\
\end{align*}
Measurement of \(\sin(2\beta) \)

\[
B^0 \rightarrow D^* \pm D^+ \\
LHCb-PAPER-2019-036 \text{ in preparation}
\]

\[
S_{D^*D} = -0.861 \pm 0.077 \text{ (stat) } \pm 0.019 \text{ (syst)}
\]
\[
\Delta S_{D^*D} = 0.019 \pm 0.075 \text{ (stat) } \pm 0.012 \text{ (syst)}
\]
\[
C_{D^*D} = -0.059 \pm 0.092 \text{ (stat) } \pm 0.020 \text{ (syst)}
\]
\[
\Delta C_{D^*D} = -0.031 \pm 0.092 \text{ (stat) } \pm 0.016 \text{ (syst)}
\]
\[
A_{D^*D} = 0.008 \pm 0.014 \text{ (stat) } \pm 0.005 \text{ (syst)}
\]
Measurement of $\sin(2\beta)$

$B^0 \rightarrow D^{\ast\pm}D^{\mp}$

D*+ D+ S

- **BaBar**
 - PRD 79, 032002 (2009)
 - $-0.68 \pm 0.15 \pm 0.04$

- **Belle**
 - PRD 85 (2012) 091106
 - $-0.78 \pm 0.15 \pm 0.05$

- **Average**
 - -0.73 ± 0.11

D*+ D+ ΔS

- **BaBar**
 - PRD 79, 032002 (2009)
 - $0.05 \pm 0.15 \pm 0.02$

- **Belle**
 - PRD 85 (2012) 091106
 - $-0.13 \pm 0.15 \pm 0.04$

- **Average**
 - -0.04 ± 0.11

D*+ D+ C

- **BaBar**
 - PRD 79, 032002 (2009)
 - $0.04 \pm 0.12 \pm 0.03$

- **Belle**
 - PRD 85 (2012) 091106
 - $-0.01 \pm 0.11 \pm 0.04$

- **Average**
 - 0.01 ± 0.09

D*+ D+ ΔC

- **BaBar**
 - PRD 79, 032002 (2009)
 - $0.04 \pm 0.12 \pm 0.03$

- **Belle**
 - PRD 85 (2012) 091106
 - $0.12 \pm 0.11 \pm 0.03$

- **Average**
 - 0.08 ± 0.08

Marta Calvi @Beauty

Katya Govorkova

B$^0_s \rightarrow J/\psi K^+K^-$ and other time-dependent analyses at LHCb

16 October 2019
Recent measurements of ϕ_s
- $B_s^0 \rightarrow J/\psi K^+K^-$ \cite{EPJC 79 (2019) 706}
- $B_s^0 \rightarrow J/\psi \pi^+\pi^-$ \cite{PLB 797 (2019)}
- $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$ \cite{JHEP 03 (2018) 140}
- $B_s^0 \rightarrow \phi \phi$ \cite{arXiv:1907.10003}
- $B_s^0 \rightarrow \phi \gamma$ \cite{PRL 123 (2019) 081802}

Recent measurements of $\sin(2\beta)$
- $B^0 \rightarrow D^{*\pm}D^{\mp}$ \cite{LHCb-PAPER-2019-036} in preparation

With current precision all measurements are consistent with SM

Further analysis of available dataset is in progress for most of the modes

Summary and prospects

Figure 3.4: Signal-yield asymmetry as a function of the decay time modulo 2π. The solid curves represent the expected sensitivity for $B_s^0 \rightarrow J/\psi K^+K^-$ from all modes combined. This will be at the same level as the current precision with integrated luminosity for individual decay modes $J/\psi\pi^+\pi^-$, $J/\psi K^+K^-$, $\psi(2S) K^+K^-$, and $D^{(*)}\pi^-$. The scaling of the asymmetry for $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$ is important in LHCb Upgrade II, as shown in Fig. 3.4.

Figure 3.5: LHCb 300 fb$^{-1}$ simulation of the decay $B_s^0 \rightarrow J/\psi K^+K^-$. The observed signal yield asymmetry is consistent with the expected sensitivity.
Fit result $B^0_s \rightarrow J/\psi \ K^+ K^-$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_s [rad]</td>
<td>$-0.080 \pm 0.041 \pm 0.006$</td>
</tr>
<tr>
<td>$</td>
<td>\lambda</td>
</tr>
<tr>
<td>$\Gamma_s - \Gamma_d$ [ps$^{-1}$]</td>
<td>$-0.0041 \pm 0.0024 \pm 0.0015$</td>
</tr>
<tr>
<td>$\Delta \Gamma_s$ [ps$^{-1}$]</td>
<td>$0.0772 \pm 0.0077 \pm 0.0026$</td>
</tr>
<tr>
<td>Δm_s [ps$^{-1}$]</td>
<td>$17.705 \pm 0.059 \pm 0.018$</td>
</tr>
<tr>
<td>$</td>
<td>A_\perp</td>
</tr>
<tr>
<td>$</td>
<td>A_0</td>
</tr>
<tr>
<td>$\delta_\perp - \delta_0$</td>
<td>$2.64 \pm 0.13 \pm 0.10$</td>
</tr>
<tr>
<td>$\delta_\parallel - \delta_0$</td>
<td>$3.061^{+0.084}_{-0.073} \pm 0.037$</td>
</tr>
</tbody>
</table>
Fit projections for $B^0_s \rightarrow J/\psi K^+ K^-$
Fit projections for $B^0_s \to J/\psi \pi^+\pi^-$
Systematics for \(B_s^0 \rightarrow J/\psi \; K^+K^- \) Systematics

| Source | \(|A_0|^2 \) | \(|A_{\perp}|^2 \) | \(\phi_s \) [rad] | \(|\lambda| \) | \(\delta_{\perp} - \delta_0 \) [rad] | \(\delta_{||} - \delta_0 \) [rad] | \(\Gamma_s - \Gamma_d \) [ps\(^{-1}\)] | \(\Delta \Gamma_s \) [ps\(^{-1}\)] | \(\Delta m_s \) [ps\(^{-1}\)] |
|-------------------------------|-------------|-----------------|-----------------|--------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Mass width parametrisation | 0.0006 | 0.0005 | - | - | 0.05 | 0.009 | - | 0.0002 | 0.001 |
| Mass factorisation | 0.0002 | 0.0004 | 0.004 | 0.0037 | 0.01 | 0.004 | 0.0007 | 0.0022 | 0.016 |
| Multiple candidates | 0.0006 | 0.0001 | 0.0011 | 0.0011 | 0.01 | 0.002 | 0.0003 | 0.0001 | 0.001 |
| Fit bias | 0.0001 | 0.0006 | 0.001 | - | 0.02 | 0.033 | - | 0.0003 | 0.001 |
| \(C_{SP} \) factors | - | 0.0001 | 0.001 | 0.0010 | 0.01 | 0.005 | - | 0.0001 | 0.002 |
| Quadratic OS tagging | - | - | - | - | - | - | - | - | - |
| Time res.: statistical | - | - | - | - | - | - | - | - | - |
| Time res.: prompt | - | - | - | - | - | - | 0.001 | - | 0.001 |
| Time res.: mean offset | - | - | 0.0032 | 0.0010 | 0.08 | 0.001 | 0.0002 | 0.0003 | 0.005 |
| Time res.: Wrong PV | - | - | - | - | - | 0.001 | - | - | 0.001 |
| Ang. acc.: statistical | 0.0003 | 0.0004 | 0.0011 | 0.0018 | - | 0.004 | - | - | 0.001 |
| Ang. acc.: correction | 0.0020 | 0.0011 | 0.0022 | 0.0043 | 0.01 | 0.008 | 0.0001 | 0.0002 | 0.001 |
| Ang. acc.: low-quality tracks | 0.0002 | 0.0001 | 0.0005 | 0.0014 | - | 0.002 | 0.0002 | 0.0001 | - |
| Ang. acc.: \(t \) \& \(\sigma_t \) dependence | 0.0008 | 0.0012 | 0.0012 | 0.0007 | 0.03 | 0.006 | 0.0002 | 0.0010 | 0.003 |
| Dec.-time eff.: statistical | 0.0002 | 0.0003 | - | - | - | - | 0.0012 | 0.0008 | - |
| Dec.-time eff.: \(\Delta \Gamma_s = 0 \) sim. | 0.0001 | 0.0002 | - | - | - | - | 0.0003 | 0.0005 | - |
| Dec.-time eff.: knot pos. | - | - | - | - | - | - | - | - | - |
| Dec.-time eff.: p.d.f. weighting | - | - | - | - | - | - | 0.0001 | 0.0001 | - |
| Dec.-time eff.: kin. weighting | - | - | - | - | - | - | 0.0002 | - | - |
| Length scale | - | - | - | - | - | - | - | 0.004 | - |
| Quadratic sum of syst. | 0.0024 | 0.0019 | 0.0061 | 0.0064 | 0.10 | 0.037 | 0.0015 | 0.0026 | 0.018 |
Table 5: Fit results of the resonant structure for both Solutions I and II. These results do not supersede those in Ref. [21] for the resonant fractions.

<table>
<thead>
<tr>
<th>Component</th>
<th>Fit fractions (%)</th>
<th>Transversity fractions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Solution I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_0(980)$</td>
<td>60.09 ± 1.48</td>
<td>100</td>
</tr>
<tr>
<td>$f_0(1500)$</td>
<td>8.88 ± 0.87</td>
<td>100</td>
</tr>
<tr>
<td>$f_0(1790)$</td>
<td>1.72 ± 0.29</td>
<td>100</td>
</tr>
<tr>
<td>$f_2(1270)$</td>
<td>3.24 ± 0.48</td>
<td>13 ± 3</td>
</tr>
<tr>
<td>$f'_2(1525)$</td>
<td>1.23 ± 0.86</td>
<td>40 ± 13</td>
</tr>
<tr>
<td>NR</td>
<td>2.64 ± 0.73</td>
<td>100</td>
</tr>
<tr>
<td>Solution II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_0(980)$</td>
<td>93.05 ± 1.12</td>
<td>100</td>
</tr>
<tr>
<td>$f_0(1500)$</td>
<td>6.47 ± 0.41</td>
<td>100</td>
</tr>
<tr>
<td>$f_0(1710)$</td>
<td>0.74 ± 0.11</td>
<td>100</td>
</tr>
<tr>
<td>$f_2(1270)$</td>
<td>3.22 ± 0.44</td>
<td>17 ± 4</td>
</tr>
<tr>
<td>$f'_2(1525)$</td>
<td>1.44 ± 0.36</td>
<td>35 ± 8</td>
</tr>
<tr>
<td>NR</td>
<td>8.13 ± 0.79</td>
<td>100</td>
</tr>
<tr>
<td>Source</td>
<td>$\Gamma_H - \Gamma_{B^0}$ [fs$^{-1}$]</td>
<td>$</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>t acceptance</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>τ_{B^0}</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Efficiency ($m_{\pi\pi}$, Ω)</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>t resolution width</td>
<td>0.0</td>
<td>4.3</td>
</tr>
<tr>
<td>t resolution mean</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Background</td>
<td>3.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Flavour tagging</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Δm_s</td>
<td>0.3</td>
<td>4.6</td>
</tr>
<tr>
<td>Γ_L</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>B_c^+</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Resonance parameters</td>
<td>0.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Resonance modelling</td>
<td>0.5</td>
<td>28.9</td>
</tr>
<tr>
<td>Production asymmetry</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>3.8</td>
<td>29.9</td>
</tr>
</tbody>
</table>
Decay time acceptance

Decay time acceptance is approximately:

\[\varepsilon_{\text{data}}^{B_s^0}(t) \propto \frac{N(t)}{e^{-\Gamma_d t} \otimes G(t, \sigma_t)} \]

Given a parameterisation of \(\Gamma_d \) around the used value \(\Gamma_{d0} = 1/1.520 \text{ps}^{-1} \)

\[\varepsilon_{\text{data}}^{B_s^0}(t; \Gamma_d) \propto \frac{N(t)}{e^{-(\Gamma_{d0} + \delta \Gamma_d)t} \otimes G(t, \sigma_t)} \]

\[\approx \frac{N(t)}{e^{-\Gamma_{d0} t} \otimes G(t, \sigma_t)} \times e^{\delta \Gamma_d t} \]

\[= \varepsilon_{\text{data}}^{B_s^0}(t; \Gamma_{d0}) \times e^{\delta \Gamma_d t} . \]

\[\Delta \Gamma_d^s = \Gamma_s - \Gamma_d \text{ and } \Gamma_d = \Gamma_{d0} + \delta \Gamma_d: \quad \Gamma_s = \Gamma_{d0} + \delta \Gamma_d + \Delta \Gamma_d^s \]

\[\text{pdf}(t) \approx \varepsilon_{\text{data}}^{B_s^0}(t, \Gamma_{d0}) \times e^{\delta \Gamma_d t} \times \left[e^{-(\Delta \Gamma_d^s + \Gamma_{d0} + \delta \Gamma_d)t} \otimes G(t, \sigma_t) \right] \]

\[\approx \varepsilon_{\text{data}}^{B_s^0}(t, \Gamma_{d0}) \times e^{\delta \Gamma_d t} \times e^{-\delta \Gamma_d t} \left[e^{-(\Delta \Gamma_d^s + \Gamma_{d0})t} \otimes G(t, \sigma_t) \right] \]

\[= \varepsilon_{\text{data}}^{B_s^0}(t, \Gamma_{d0}) \times e^{-(\Delta \Gamma_d^s + \Gamma_{d0})t} \otimes G(t, \sigma_t) , \]
Signal model: Double-sided Crystal Ball function (CB2) with per-event mass error used as conditional observable

Quadratic dependence on the per-event mass error: \(\sigma = s_1 \Delta \sigma + s_2 \sigma^2 \) (\(s_1 \sim 0.8; s_2 \sim 0.05 \))
- Tails of the CB2 are fixed from the fit to MC
- Fit in 6 \(m(K^+K^-) \) bins \([990, 1008, 1016, 1020, 1024, 1032, 1050] \) MeV/\(c^2 \)

Background: Exponential for the combinatorial and gaussian for the \(B^0 \rightarrow J/\psi \ K^+K^- \) contribution

Why? To take into account this correlation. Mass resolution comes from the angles between muons, therefore per-candidate mass error and \(\cos(\theta_\mu) \) are highly correlated
Comparison of φ_s sensitivity from different decay modes

$\sigma^{\text{stat}} (\varphi_s) [\text{rad}]$ vs. Integrated Luminosity [fb$^{-1}$]

$\sigma^{\text{stat}} (\varphi_s) [\text{mrad}]$ vs. Integrated Luminosity [fb$^{-1}$]

- $B_s \to J/\psi \phi$
- $B_s \to \phi \phi$
- $B_s \to K^+ \pi^- K^- \pi^+$

LHCb

- $B^0 \to \psi(2S) \phi$
- $B^0_s \to D_s^- D^+_s$
- $B^0 \to J/\psi K^+ K^-$ high mass
- $B^0 \to J/\psi \pi \pi$
- $B^0_s \to J/\psi \phi$
- B^0_s all $c\bar{s}$
- φ_s central value [CKMFitter Summer 2016]
Opposite side tagging

B^{0s} \rightarrow J/\psi K^+K^-

EUR.PHYS.J.C 79 (2019) 706

B^{0s} \rightarrow J/\psi \pi^+\pi^-

To appear in _PLB 797 (2019)_

In Run1 \(\epsilon_{\text{tag}} D^2 \approx 3.73 \% \)

\[\epsilon_{\text{tag}} D^2 = 4.73 \pm 0.34 \% \]

In Run1 \(\epsilon_{\text{tag}} D^2 \approx 3.89 \% \)

\[\epsilon_{\text{tag}} D^2 = 5.06 \pm 0.38 \% \]
Same side tagging

\[B^0_s \to J/\psi K^+ K^- \]
EUR.PHYS.J.C 79 (2019) 706

\[B^0_s \to J/\psi \pi^+ \pi^- \]
To appear in PLB 797 (2019)

In Run1 \(\varepsilon_{\text{tag}} D^2 \approx 3.73 \% \)
\[\varepsilon_{\text{tag}} D^2 = 4.73 \pm 0.34 \% \]

In Run1 \(\varepsilon_{\text{tag}} D^2 \approx 3.89 \% \)
\[\varepsilon_{\text{tag}} D^2 = 5.06 \pm 0.38 \% \]
Fit projections in decay time, three angles and $m(K\pi)$