Highlights from the LHCb experiment

EPS 2019, July 10-17 2019
Katharina Müller
on behalf of the LHCb collaboration
Physik Institut, University of Zurich
LHCb detector

forward arm spectrometer for precision measurements (2<\eta<5)

- good vertex and impact parameter resolution ($\sigma(\text{IP}) = 15 \pm 29/\text{p}_T \ \mu\text{m}$)
- excellent momentum resolution ($\sigma(m_B) \sim 25 \text{ MeV}/c^2$ for 2-body decays)
- excellent particle ID (\mu ID 97\% for $(\pi \rightarrow \mu)$ misID of 1-3\%)
- stable running conditions constant μ
- trigger on small p_T and low mass objects
- real time analysis alignment and calibration fully automated

LHCb has recorded about 9 fb^{-1} of pp collisions
1 fb^{-1} @ 7 TeV – Run 1
2 fb^{-1} @ 8 TeV – Run 1
6 fb^{-1} @ 13 TeV – Run 2

plus various datasets of proton-lead, lead-lead collisions as well as fixed target datasets: pNe, pHe, pAr, PbAr

→ LHCb a multipurpose detector in the forward region
• A_f in $D^0 \to K^+K^-, \pi^+\pi^-$ [LHCb-CONF-2019-001]
History of CP violation

- CPV in Kaons and B mesons is well established – both are down type quarks
- charm contains an up-type quark
- SM predicts it to be at $10^{-3} - 10^{-4}$ level
- LHC is a charm factory, with billions of charm decays in LHCb
Observation of CP violation in charm

charm decays allow CP violation to be probed in the up-sector → complementary to studies in K and B systems

expected to be very small in the SM (10^{-3} - 10^{-4} level), but theory predictions are not very precise (large long distance effects)
time dependent CP asymmetries

\[A_{CP}(f; t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(D^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(D^0(t) \to f)} \]
sensitive to

- direct CP-violation \((a_{CP}^{dir})\)
- indirect CP-violation \((a_{CP}^{indir})\)
 (CP-violation in mixing or in the interference between mixing and decay)
Observation of CP violation in charm

full Run 2 data 5.9 fb$^{-1}$
count how many D^0 and anti-D^0 decay into $\pi^+\pi^-$ and K^+K^- should be equal if matter = antimatter

experimentally: easier to measure (time integrated) difference in CP asymmetry:

$$\Delta A_{CP} = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$$

- many systematics cancel at first order
- initial flavour of D meson tagged by charge of π in prompt decays ($D^{*+} \rightarrow D^0\pi^+$), and by the muon charge in secondary production ($B^0 \rightarrow D^0\mu^-X$)
Observation of CP violation in charm

Run 2 result:
\[\Delta A_{\text{CP}} = (-18.2 \pm 3.2 \text{ (stat)} \pm 0.9 \text{ (syst)}) \times 10^{-4} \]
\[\Delta A'_{\text{CP}} = (-9 \pm 8 \text{ (stat)} \pm 5 \text{ (syst)}) \times 10^{-4} \]

\(\pi \)-tag compatible with previous LHCb result and world average

combination with Run 1 result
\[\Delta A_{\text{CP}} = (-15.4 \pm 2.9) \times 10^{-4} \]

\(\rightarrow \) 5.3 \(\sigma \) difference from 0

\(\rightarrow \) roughly compatible with SM predictions

WA dominated by LHCb uncertainties of SM predictions larger than data

\(\rightarrow \) new window opened to investigate matter-antimatter asymmetry
Oscillations of charm mesons in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

neutral flavoured mesons can oscillate between their particle and antiparticle states

\rightarrow the physical mass eigenstates are linear combinations of the weak eigenstates

$|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\bar{D}^0\rangle$

with masses m_1 and m_2 and decay widths $\Gamma_1 + \Gamma_2$

mixing parameters $x \equiv (m_1 - m_2)c^2/\Gamma$ and $y \equiv (\Gamma_1 - \Gamma_2)/\Gamma$ ($\Gamma = (\Gamma_1 + \Gamma_2)/2$)

x determines the oscillation rate

x is very small for charm mesons but x and CPV can be enhanced by the presence of new particles beyond the SM.

CPV can occur in the mixing \rightarrow oscillation rates differ for mesons and antimesons

LHCb Run 1, decay: $D^0 \rightarrow K_S^0 \pi^+ \pi^+$
yields: prompt 1.3M, secondary 1M candidates
Oscillations of charm mesons in $D^0 \to K_S^0 \pi^- \pi^+$

model independent approach (bin-flip method)

→ most precise determination of CP averaged normalized mass difference $x=(m_1-m_2)c^2/\Gamma$ by a single experiment

$x_{\text{CP}} = [2.7 \pm 1.6 \pm 0.4] \times 10^{-3}$

$y_{\text{CP}} = [7.4 \pm 3.6 \pm 1.1] \times 10^{-3}$

if CP symmetry in mixing and interference is conserved:

$x_{\text{CP}} = x$, $y_{\text{CP}} = y$

$x_{\text{CP}} = (3.9^{+1.1}_{-1.2}) \times 10^{-3}$ new world average

→ new world average provides first evidence of mass difference between the neutral charm mesons

Measurement of CPV parameter A_Γ in $D^0 \to K^+K^-$, $\pi^+\pi^-$

A_Γ probes CPV in mixing and interference

$$A_{CP}(f,t) \approx A_{CP}^{\text{decay}} - A_\Gamma(f) \frac{\langle t \rangle_f}{\tau_D}$$

SM predictions: $\approx 3 \times 10^{-5}$ [arXiv:1812.07638]

A_Γ required input to measure CPV in decay from ΔA_{CP}

→ measure time dependent CP asymmetry

$$A_\Gamma(K^+K^-) = (1.3 \pm 3.5 \pm 0.7) \times 10^{-4}$$

$$A_\Gamma(\pi^+\pi^-) = (11.3 \pm 6.9 \pm 0.8) \times 10^{-4}$$

combined with previous LHCb result

$$A_\Gamma(\pi\pi + KK) = (0.9 \pm 2.1 \pm 0.7) \times 10^{-4}$$

$$\Delta A_\Gamma = A_\Gamma(KK) - A_\Gamma(\pi\pi) = (-8.6 \pm 5.0 \pm 0.5) \times 10^{-4}$$

analysis based on 2 fb$^{-1}$ Run 2 data, still 4 fb$^{-1}$ to be analysed, statistically limited

→ need Upgrade II to reach sensitivity of SM
Precision in beauty – covered in more detail in Johannes’ talk

- Combination of γ measurements [LHCb-CONF-2018-002]
- B_s mixing phase Φ_s [arXiv:1903.05530, arXiv:1906.08356]
- Phase Φ_{sss} in $B_s \rightarrow \phi \phi$ decays [LHCb-PAPER-2019-019]
Combination of γ measurements

tension (2σ) between B^+ and B_s^0 results

tension (2σ) between direct measurements and indirect constraints from UT

LHCb: new measurement in $B^0 \rightarrow DK^{*0}$ ($D \rightarrow K\pi$, KK, $\pi\pi$) [arXiv:1906.08927]

HFLAV from UT (CKM fitter) $\gamma=(71.1^{+4.6}_{-5.3})^\circ$

$\gamma=(65.8^{+1.0}_{-1.7})^\circ$

$\gamma=(74.0^{+5.0}_{-5.8})^\circ$
B_s mixing phase Φ_s from $B_s \rightarrow J/\psi$ KK and $B_s \rightarrow J/\psi\pi\pi$ measure the phase difference between the two processes.

SM prediction $\Phi_s = -36.8^{+9.6}_{-6.8}$ mrad (CKM Fitter)

highly sensitive to NP contributions

LHCb uses two channels:

$B_s \rightarrow J/\psi$ KK and $B_s \rightarrow J/\psi\pi\pi$

high yield, clean signature

→ very high precision measurements

flavour tagging from decay of other b hadrons in the event analysis part of Run 2 (2 fb$^{-1}$) combined with Run 1

$\Phi_s = (-41 \pm 25)$ mrad (still 4 fb not analysed)

HFLAV combination: $\Phi_s = (-55 \pm 21)$ mrad

[arXiv: 1903.05530]
[arXiv: 1906.08356]
Measurement of CP violation in $B_s \rightarrow \Phi \Phi$

Enhanced sensitivity to NP since decay is dominated by penguin loop

SM prediction $|\Phi_s^{sss}| < 20$ mrad

time dependent angular analysis, 2 fb$^{-1}$ Run 2

$\Phi_s^{sss} = -73 \pm 115 \pm 27$ mrad

$|\lambda| = -0.99 \pm 0.05 \pm 0.01$

(LHCb preliminary)
Test of lepton flavour universality

test of LFU in various B decays with leptons in the final state

Charged current (Semileptonic decays)
tree-level decays $b \rightarrow c l \nu$, testing third generation
BR of few %, precise prediction in SM

$$R(D^{(*)}) = \frac{BR(B \rightarrow D^{(*)} \tau \bar{\nu}_\tau)}{BR(B \rightarrow D^{(*)} \mu \bar{\nu}_\mu)} = 0.252 \pm 0.003 \text{ (SM)}$$

Neutral currents (Rare decays)
$b \rightarrow sll$
forbidden at tree-level in the SM
→ FCNC only at loop level → BR $10^{-7} \div 10^{-6}$

theoretically clean

$$R(K^{(*)}) = \frac{BR(B \rightarrow K^{(*)} \mu \mu)}{BR(B \rightarrow K^{(*)} e e)} = 1 \pm \frac{O(10^{-3})}{\text{neglect lepton mass}} \pm \frac{O(10^{-2})}{\text{QED}}$$

[EPJ C76 (2016) 8, 440]
Test of lepton universality: R_K and R_{K^*}

test the LFU in FCNC decays $b \rightarrow s l^+ l^-$

Run 1 result: old results for $R(K)$ and $R(K^*)$

$$R(K^*) = \frac{BR(B \rightarrow K^{(*)} \mu \mu)}{BR(B \rightarrow K^{(*)} e e)} = 1 \pm O(10^{-3}) \pm O(10^{-2})$$

- neglect lepton mass
- QED

References:
- PRL 113, 151601 (2014)
- JHEP 08 (2017) 055
New measurement of $R(K)$

new measurement re-analysing Run 1 data and adding $\sim 2 \text{ fb}^{-1}$ of Run 2 data

$$R(K) = \frac{BR(B \rightarrow K \mu \mu)}{BR(B \rightarrow K e e)}$$

electrons are difficult to measure at LHCb: trigger, Bremsstrahlung …
New measurement of $R(K)$

Reduce systematic effects: normalise to $B \rightarrow KJ/\psi \rightarrow \mu\mu$ to measure double ratio

$$R(K) = \frac{BR(B \rightarrow K \mu\mu)}{BR(B \rightarrow K J/\psi(\rightarrow e e))} \frac{BR(B \rightarrow K e e)}{BR(B \rightarrow K J/\psi(\rightarrow \mu\mu))}$$

Signal

$1.1 < q^2 < 6 \text{ GeV}^2$

Normalisation
New measurement of $R(K)$

$$R(K) = 0.846^{+0.060}_{-0.054} \text{(stat)}^{+0.016}_{-0.014} \text{(syst)}$$

compatible with the SM at 2.5 σ
→ better precision but central value closer to the SM

→ need more data: inclusion of 2017+2018 data will double the statistics

other measurements in preparation: $R(pK)$, $R(K^*)$ and other decay channels
Search for Lepton flavour violating decays

$B^0_{(s)} \rightarrow \tau^\pm \mu^\mp$ [arXiv:1905.06614]

BR in SM highly suppressed: $\sim 10^{-54}$

can be strongly enhanced in NP models:

up to $O(10^{-8} - 10^{-5})$

$B(B_s \rightarrow \tau \mu) = 3.4 \times 10^{-5}$ @ 90% CL (first limits)

$B(B^0 \rightarrow \tau \mu) = 1.2 \times 10^{-5}$ @ 90% CL (best limits)

$B^+ \rightarrow K^+ \mu^\pm e^\mp$ [LHCB-PAPER-2019-022]

NP models including leptoquarks, extended gauge boson models or CP violation in the neutrino sector predict branching fractions $10^{-8} - 10^{-10}$

search in full Run 1 dataset, no signal observed

$B(B^+ \rightarrow K^+ \mu^+ e^-) = 7.0 \times 10^{-9}$ @ 90% CL

$B(B^+ \rightarrow K^+ \mu^- e^+) = 7.1 \times 10^{-9}$ @ 90% CL

\rightarrow limits improved by more than one order of magnitude

• Observation of a new state in DD mass spectrum [JHEP 07 (2019) 035]

• New resonances in the $\Lambda^0_b\pi^+\pi^-$ spectrum [LHCb-PAPER-2019-025]

Doubly charmed baryons

ground states: Ξ_{cc}^{++} (ccu), Ξ_{cc}^+ (ccd) and Ω_{cc}^+ (ccs)
only Ξ_{cc}^{++} discovered so far, search ongoing for Ξ_{cc}^+ and Ω_{cc}^+

first observed by LHCb in decay: $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ final state $\Lambda_c^+ K^- \pi^+ \pi^+$ [Phys. Rev. Lett. 121 162002 (2018)]
$m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72\text{(stat)} \pm 0.27 \text{(syst)} \pm 0.14 \text{(}\Lambda_c^+) \text{ MeV/c}^2$

weakly decaying: $\tau(\Xi_{cc}^{++})= 0.256+0.024 -0.022\text{(stat)} \pm 0.014\text{(syst)} \text{ ps}$ [PRL 121 (2018) 052002]
no signal found for: $\Xi_{cc}^{++} \rightarrow D^+ (\rightarrow K^- \pi^+ \pi^+) pK^\pi^+$ [arXiv:1905.02421]

313 ± 33
Observation of a new state in DD mass spectrum

full Run1+Run2 dataset

→ new narrow state observed in the invariant mass spectra of D^0D^0 and D^+D^-

\[M_{X(3842)} = 3842.71 \pm 0.16 \pm 0.12 \text{ MeV}/c^2 \]
\[\Gamma_{X(3842)} = 2.79 \pm 0.51 \pm 0.35 \text{ MeV} \]

narrow width → likely to be \(\psi_3(1^3D_3) \) \(J^{PC} = 3^{--} \)

→ first observation of a spin-3 charmonium state

In addition: first observation of prompt hadroproduction of \(\chi_{c2}(3930) \) and \(\psi(3770) \)
New resonances in the $\Lambda_{b}^{0}\pi^{+}\pi^{-}$ spectrum

Full Run1+Run2 dataset
→ two new resonances in $\Lambda_{b}^{0}\pi^{+}\pi^{-}$ spectrum

- high mass state:
 decays via intermediate Σ_{b} and Σ_{b}^{*}
- low-mass state: decays Σ_{b} suppressed.

mass and mass-splitting are in very good agreement with expectation for $\Lambda_{b}(1D)$-doublet

\[
m(\Lambda_{b}(6152)) = 6152.51 \pm 0.26 \pm 0.22 \pm 0.16 \text{ MeV}
\]

\[
M(\Lambda_{b}(6146)) = 6146.15 \pm 0.33 \pm 0.22 \pm 0.16 \text{ MeV}
\]

\[
\Gamma(\Lambda_{b}(6152)) = 2.11 \pm 0.81 \pm 0.32 \text{ MeV}
\]

\[
\Gamma(\Lambda_{b}(6146)) = 2.90 \pm 1.28 \pm 0.28 \text{ MeV}
\]
Observation of new pentaquark states

first pentaquarks observed by LHCb four years ago using $\Lambda_b \rightarrow J/\psi Kp$

\rightarrow narrow $P_c(4450)^+$, broader $P_c(4380)^+$

large theoretical interest in understanding the nature of the new states

tightly bound vs loosely bound molecular states

Observation of new pentaquark states

Update with full Run 2 statistics, 246'000 candidates

→ new peak at $P_c(4312)^+$ (7.3σ)

→ broad $P_c(4450)^+$ resolved as two narrow states (5.4σ): $P_c(4440)^+$ and $P_c(4457)^+$

minimal quark content $duucc$

narrow and close to $\Sigma_c^+D^0$ and $\Sigma_c^+D^{*0}$ ([duc][uc]) mass thresholds

→ extremely important result to shed light on the nature of these exotic states
Heavy ion and fixed target

- b-hadron production in proton-lead collisions [Phys. Rev. D99 052011 (2019)]
- Charm production in fixed target collisions [PRL 122 (2019) 132002]
Production of B^0, B^+ and λ_b in proton-lead collisions at 8.16 TeV with exclusive decay modes:

- first measurement of beauty hadron production at $p_T < \text{mass of the hadrons in the forward region}$

- input for fits of the nuclear PDFs
- fragmentation models in nuclear environment.

Graphs:

1. **LHCb $R_{\text{eff},y}$**
 - $\sqrt{s_{NN}} = 8.16$ TeV
 - B^0/B^+ and Λ_b/B^0
 - $2 < p_T < 20 \text{ GeV/c}$

2. **LHCb $R_{\text{tot},0}$**
 - $\sqrt{s_{NN}} = 8.16$ TeV
 - B^0/B^+ and Λ_b/B^0
 - $p_T, 2.5 < y < 3.5$
Charm production in fixed target collisions

Unique opportunity for measurements in fixed target mode
first measurement of J/ψ and D⁰ production in
dHe @86.6 GeV pAr @110.4 GeV
→ sensitive to large Bjorken-x, up to x=0.37 for D⁰

D⁰ good agreement in rapidity shapes → no evidence for
significant contribution of valence-like intrinsic charm
LHCb is transforming

- charm
- beauty
- spectroscopy
- heavy ion
- fixed target
- upgrade
LHCb upgrade – upgrade I

Going on right now!
remove the hardware trigger → all detectors read out at 30 MHz

New tracking systems
VELO, UT, SciFi

Calorimeters & Muons
New readout

RICH
new optics and photodetectors

→ this will be a new detector at LHCb

[CERN-LHCC 2014-001]
[CERN-LHCC 2014-016]
[CERN LHCC 2013-021]
[CERN-LHCC 2013-022]
LHCb upgrade – work in progress

- Remove old VELO
- Remove beam pipe
- Dismantling muon station
- UT stave
- VELO test setup
- VELO RF boxes
- Event builder prototype
- RICH test stand
And looking further – upgrade II

- Aim to collect > 300 fb⁻¹ at $L = 2 \times 10^{34}$, x10 with respect to Upgrade I
- Consolidate in LS3, major upgrade in LS4
- Physics case document released [CERN-LHCC-2018-027]
- Green light from LHCC to proceed to TDRs (expected ~late 2020)
Conclusion and outlook

Plenty of interesting results still coming from LHCb Run1-2

LHCb upgrade opens the door to many improvements in precision, so interesting times are ahead!

LHCb has a bright future

- Tensions on lepton flavour universality will be clear in a few years
- Sensitivity to NP in many interesting channels, more will open with upgraded detector
- Precision measurements of SM parameters
- Heavy Ion and fixed target physics programme has much to add
Backup
Observation of a new state in DD mass spectrum

Full Run1+Run2 dataset

New narrow state observed in the invariant mass spectra of $D^0\bar{D}^0$ and D^+D^-

$\chi_c(3930) = 3921.9 \pm 0.6 \pm 0.2 \text{ MeV}/c^2$

$\Gamma_{\chi_c(3930)} = 36.6 \pm 1.9 \pm 0.9 \text{ MeV}$

→ first observation of prompt hadroproduction of $\chi_c(3930)$
Tagging flavour of charmed meson

two independent ways

$A_{\pi\text{-tagged}}(f) \approx A_{CP}(f) + A_D(\pi) + A_P(D^*)$.

Semileptonic tag

$A_{\mu\text{-tagged}}(f) \approx A_{CP}(f) + A_D(\mu) + A_P(B)$.
New combination of γ measurements

Combination of many tree level determinations

Using frequentist treatment

<table>
<thead>
<tr>
<th>B decay</th>
<th>D decay</th>
<th>Method</th>
<th>Ref.</th>
<th>Dataset</th>
<th>Status since last combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \to DK^+$</td>
<td>$D \to h^+h^-$</td>
<td>GLW</td>
<td>[14]</td>
<td>Run 1 & 2</td>
<td>Minor update</td>
</tr>
<tr>
<td>$B^+ \to DK^+$</td>
<td>$D \to h^+h^-$</td>
<td>ADS</td>
<td>[15]</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^+ \to DK^+$</td>
<td>$D \to h^+\pi^+\pi^-$</td>
<td>GLW/ADS</td>
<td>[15]</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^+ \to DK^+$</td>
<td>$D \to h^+h^0$</td>
<td>GLW/ADS</td>
<td>[16]</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^+ \to DK^+$</td>
<td>$D \to K^0d^0$</td>
<td>GGSZ</td>
<td>[17]</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^+ \to DK^+$</td>
<td>$D \to K^0d^0$</td>
<td>GGSZ</td>
<td>[18]</td>
<td>Run 2</td>
<td>New</td>
</tr>
<tr>
<td>$B^+ \to DK^+$</td>
<td>$D \to K^0d^0K^+$</td>
<td>GLS</td>
<td>[19]</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^+ \to D^*K^+$</td>
<td>$D \to h^+h^-$</td>
<td>GLW</td>
<td>[14]</td>
<td>Run 1 & 2</td>
<td>Minor update</td>
</tr>
<tr>
<td>$B^+ \to DK^{*+}$</td>
<td>$D \to h^+h^-$</td>
<td>GLW/ADS</td>
<td>[20]</td>
<td>Run 1 & 2</td>
<td>Updated results</td>
</tr>
<tr>
<td>$B^+ \to DK^{*+}$</td>
<td>$D \to h^+\pi^+\pi^-$</td>
<td>GLW/ADS</td>
<td>[20]</td>
<td>Run 1 & 2</td>
<td>New</td>
</tr>
<tr>
<td>$B^+ \to DK^{+*}\pi^+\pi^-$</td>
<td>$D \to h^+h^-$</td>
<td>GLW/ADS</td>
<td>[21]</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^0 \to DK^{*0}$</td>
<td>$D \to K^+\pi^-$</td>
<td>ADS</td>
<td>[22]</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^0 \to DK^{*+}\pi^-$</td>
<td>$D \to h^+h^-$</td>
<td>GLW-Dalitz</td>
<td>[23]</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^0 \to DK^{*0}$</td>
<td>$D \to K^0d^0$</td>
<td>GGSZ</td>
<td>[24]</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^0 \to D^0K^\pm$</td>
<td>$D^+ \to h^+h^+\pi^+$</td>
<td>TD</td>
<td>[25]</td>
<td>Run 1</td>
<td>Updated results</td>
</tr>
<tr>
<td>$B^0 \to D^\mp$</td>
<td>$D^+ \to K^+\pi^-$</td>
<td>TD</td>
<td>[26]</td>
<td>Run 1</td>
<td>New</td>
</tr>
</tbody>
</table>

1 Run 1 corresponds to an integrated luminosity of 3 fb$^{-1}$ taken at centre-of-mass energies of 7 and 8 TeV. Run 2 corresponds to an integrated luminosity of 2 fb$^{-1}$ taken at a centre-of-mass energy of 13 TeV.

Run 2 measurements with 2 fb$^{-1}$ (4 fb$^{-1}$ yet to be included)

$\gamma = (74.0^{+5.0}_{-5.8})^\circ$
Upgraded LHCb Detector

Detector Channels

R/O Electronics

To be UPGRADED

To be kept

«This is a new detector at the LHC»
Oscillations of charm mesons in $D^0 \to K^0_S \pi^- \pi^+$

Model independent approach (bin-flip method)
Data is binned in Dalitz coordinates
binning scheme: approximately constant strong-phase differences
measure the yield ratio R_{bj}^\pm between $-b$ and b in bins of decay time

Observation of new pentaquark states

246’000 candidates
→ new peak at $P_c(4312)^+$ (7.3σ)
→ broad $P_c(4450)^+$ resolved as two narrow states (5.4σ): $P_c(4440)^+$ and $P_c(4457)^+$

$m>1.9$ GeV remove λ^*

Reweighted to enhance signal
LHCb – a multipurpose detector in the forward region

- Indirect searches for New Physics at the multi-TeV scale
decays of beauty and charm hadron
CP violation

- Understanding the details of QCD
Heavy flavour production, pentaquark states,
double heavy states, top physics, jets …

- Quark gluon plasma, cold nuclear effects in heavy ion collisions
Heavy flavour production in p-Pb collisions, fixed target collisions
Doubly charmed baryons

Search for: $\Xi_{cc}^{++} \rightarrow D^+ (\rightarrow K^-\pi^+\pi^+) pK\pi^+$

no signal found $\rightarrow \mathcal{R} = \frac{\mathcal{B}(\Xi_{cc}^{++} \rightarrow D^+ pK^-\pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^-\pi^+\pi^+)} < 1.5 \times 10^{-2} \text{ at } 90\% \text{ CL}$

LHCb 13 TeV

+Data
-Background