The Compact Linear e⁺e⁻ Collider (CLIC): Physics Potential

Input to the European Particle Physics Strategy Update on behalf of the CLIC and CLICdp Collaborations

18 December 2018

Contact person: P. Roloff

Editors: R. Franceschini, P. Roloff, U. Schnoor, A. Wulzer

* CERN, Geneva, Switzerland, † Università degli Studi Roma Tre, Rome, Italy, ‡ INFN, Sezione di Roma Tre, Rome, Italy, § Università di Padova, Padova, Italy, ¶ LPTP, EPFL, Lausanne, Switzerland

Abstract

The Compact Linear Collider, CLIC, is a proposed e⁺e⁻ collider at the TeV scale whose physics potential ranges from high-precision measurements to extensive direct sensitivity to physics beyond the Standard Model. This document summarises the physics potential of CLIC, obtained in detailed studies, many based on full simulation of the CLIC detector. CLIC covers one order of magnitude of centre-of-mass energies from 350 GeV to 3 TeV, giving access to large event samples for a variety of SM processes, many of them for the first time in e⁺e⁻ collisions or for the first time at all. The high collision energy combined with the large luminosity and clean environment of the e⁺e⁻ collisions enables the measurement of the properties of Standard Model particles, such as the Higgs boson and the top quark, with unparalleled precision. CLIC might also discover indirect effects of very heavy new physics by probing the parameters of the Standard Model Effective Field Theory with an unprecedented level of precision. The direct and indirect reach of CLIC to physics beyond the Standard Model significantly exceeds that of the HL-LHC. This includes new particles detected in challenging non-standard signatures. With this physics programme, CLIC will decisively advance our knowledge relating to the open questions of particle physics.
1. Introduction

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e^+e^- collider under development [1, 2]. CLIC uses a novel two-beam acceleration method, with normal-conducting structures operating with gradients in the range of 70–100 MV/m. This approach provides the only mature option for a multi-TeV lepton collider. In parallel, a detector to study the e^+e^- collisions at CLIC is being designed based on a broad range of simulation studies and R&D on crucial technological aspects [3, 4].

To cover the widest possible range of physics opportunities, CLIC will be constructed in several centre-of-mass energy stages. A first stage at 380 GeV gives access to the Higgsstrahlung process, which in e^+e^- collisions enables a unique Higgs physics programme, and to the top quark, which so far has only been produced in hadron collisions. The higher-energy stages, currently assumed to be at 1.5 TeV and 3 TeV, provide unique sensitivity for a large number of new physics scenarios and give access to the Higgs self-coupling.

The current CLIC baseline staging scenario [5], based on accelerator ramp-up and up-time scenarios harmonised with those of other potential future colliders, assumes 1.0 ab$^{-1}$, 2.5 ab$^{-1}$ and 5.0 ab$^{-1}$ of luminosity collected at the three energy stages of \sqrt{s} = 380 GeV, 1.5 TeV and 3 TeV, respectively. The first stage includes 100 fb$^{-1}$ obtained in an energy scan around the $t\bar{t}$ production threshold. The complete physics programme will span 25–30 years. The baseline CLIC accelerator provides ±80% longitudinal polarisation for the electron beam, and no positron polarisation. Equal amounts of −80% and +80% polarisation running are foreseen at the initial energy stage. At the two higher-energy stages, a sharing of the running time for −80% and +80% electron polarisation in the ratio 80 : 20 is assumed. The baseline scenario as described above is summarised in Table 1.

<table>
<thead>
<tr>
<th>Stage</th>
<th>\sqrt{s} [TeV]</th>
<th>\mathcal{L}_{int} [ab$^{-1}$]</th>
<th>$P(e^-)$ = −80%</th>
<th>$P(e^-)$ = +80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.38 (and 0.35)</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>2.5</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>5.0</td>
<td>4.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The CLIC physics programme will enable fundamentally new insights beyond the capabilities of the HL-LHC. The flexibility and large accessible energy range, almost one order of magnitude, provides a wide range of possibilities to discover new physics using very different approaches. The high centre-of-mass energy of CLIC extends the direct mass reach to scales far greater than that available at previous lepton colliders, surpassing even the HL-LHC for many signatures. The high luminosity and absence of QCD backgrounds give access to very rare processes at all energies. The clean experimental environment and absence of triggers in high-energy e^+e^- collisions and the good knowledge of the initial state allow precise measurements of many reactions to be performed, which probe the effects of new physics at mass scales far beyond the kinematic reach for direct production of new particles. The use of electron beam polarisation enhances this reach further and may help to characterise newly discovered phenomena. Threshold scans provide very precise measurements of known particle masses. The CLIC experimental environment is also well-suited for looking for non-standard signatures such as anomalous tracks, peculiar secondary vertices, or unexpected energy depositions in the calorimeters.

These capabilities make CLIC an ideal option for the next large facility in high energy physics. The first energy stage at 380 GeV provides an exciting programme of precision Higgs and top-quark physics while the energies of the succeeding stages can be adapted to possible input from the HL-LHC or earlier CLIC running. In the following, we will discuss the physics potential of CLIC from two different perspectives. Section 2 explores important Standard Model (SM) processes with an emphasis on Higgs boson and top-quark physics. First conclusions on the indirect sensitivity to new physics scales are obtained from Effective Field Theory. Section 3 shows how this indirect reach, combined with the great direct exploration potential, allows CLIC to make decisive progress on a number of concrete Beyond the Standard Model (BSM) questions and scenarios.

The CLIC accelerator and detector are described in a separate submission to the European Strategy Update process, ‘The Compact Linear e^+e^- Collider (CLIC): Accelerator and Detector’ [6]; this and supporting documents can be found at the following location:

Supporting documents: http://clic.cern/european-strategy
2. Learning from Standard Model processes

A key component of the CLIC physics programme studies the production and decay properties of the known SM particles. The experimental conditions at CLIC allow the selection of many relevant final states with high efficiency while keeping the background contributions at a low level. The known centre-of-mass energy provides an additional kinematic constraint for event reconstruction that is not available in hadron collisions. In this section, the CLIC potential for Higgs boson and top-quark physics, as well as two-fermion and multi-boson production processes, is discussed.

2.1. Higgs boson

After the discovery of a Higgs boson, the investigation of its properties and with it the nature of the mechanism of electroweak symmetry breaking has top priority in particle physics. New physics scenarios in the Higgs sector include extended Higgs sectors, composite Higgs, and models with the Higgs boson as a portal to a BSM sector.

![Figure 1: Production cross section as a function of centre-of-mass energy for the main Higgs boson production processes at an e+e− collider [7].](image)

Figure 1 shows the centre-of-mass energy dependence of the relevant Higgs boson production processes in e+e− interactions. The Higgsstrahlung mechanism, e+e− → ZH, is dominant at 380 GeV. This process can be identified using the mass recoiling against the Z boson, which provides the Higgs branching ratios and width in a model-independent manner, without any assumptions about BSM invisible decays; a feature that is unique to lepton colliders. In total, 160,000 Higgs bosons are produced at the first stage of CLIC operation. At 1.5 and 3 TeV, large Higgs boson samples are produced in WW fusion, e+e− → Hνeνe. The full CLIC baseline scenario provides about 4.5 million Higgs boson decays. The Higgs self-coupling can be probed in e+e− → ZHH and e+e− → HHνeνe events at high energy. The CLIC Higgs reach has been comprehensively investigated using full simulation studies [5, 7]. The CLIC projections for the extraction of the Higgs couplings and the Higgs self-coupling are summarised in the following 2.

Higgs couplings The measurements of Higgs boson production cross sections times branching fractions in all accessible channels can be combined to extract the Higgs couplings and width. A model-independent global fit, described in [7], makes use of the total cross section for the Higgsstrahlung process measured using the recoil mass method at the first energy stage to avoid any assumptions about additional BSM decays. For this reason, the initial CLIC stage is crucial for the Higgs physics programme. The results of the fit for the three CLIC energy stages are shown in Figure 2(left). The expected precision on gHZZ is 0.6% from the total ZH cross section. Other couplings such as gHHWW and gbbh, reach similar precision in the model-independent approach. The gHH coupling, which is very challenging at hadron colliders, can be probed with percent-level precision. The total Higgs width is extracted with 2.5% accuracy. The Higgsstrahlung process at the first CLIC stage can also be used to set a model-independent upper limit on invisible Higgs boson decays of BR(H → invis.) < 0.69% at 90% C.L. from the recoil mass spectrum.

Results from a global fit under the assumption of no non-SM Higgs boson decays, which is model-dependent and equivalent to the approach at hadron colliders, are illustrated in Figure 2(right). In this case, several Higgs couplings are constrained to per mille-level precision at the high-energy stages.

Higgs self-coupling The Higgs self-coupling deserves special attention as the HL-LHC [8] is not sensitive to its SM value. Deviations from the SM expectation can reach tens of percent in various new physics scenarios. Double-Higgs boson production accessible at high-energy CLIC operation is sensitive to the Higgs self-coupling λ at tree level. The second energy stage allows a 5σ-observation of the double Higgsstrahlung process e+e− → ZHH and provides evidence for the WW fusion process e+e− → HHνeνe with a significance of 3.6σ assuming the SM value of λ. Both measurements are complementary as the ZHH (HHνeνe) cross section increases (decreases) with λ in the region around the SM value.

2The Higgs physics projections were obtained assuming slightly different energies for the first two stages: 350 GeV instead of 380 GeV and 1.4 TeV instead of 1.5 TeV.
2 Learning from Standard Model processes

At $\sqrt{s} = 3$ TeV, WW fusion is the leading double-Higgs boson production mechanism. The cross section is large enough to enable the measurement of differential cross sections to improve the knowledge of the Higgs self-coupling further. Using both processes at the second stage and differential distributions for HH production at 3 TeV leads to an expected precision on the Higgs self-coupling λ of $[-7\%, +11\%]$ [9]. The inclusion of the ZHH cross section and the use of differential distributions avoids an ambiguity that occurs in the extraction of λ from the $e^+e^- \rightarrow HH$ cross section alone. Given the precision that can be achieved and the possible sizes of deviations in relevant extensions of the SM, the Higgs self-coupling measurement is a very important motivation for CLIC operation in the multi-TeV region.

2.2. Top quark

The top quark is the heaviest known fundamental particle and plays an important role in many BSM theories; it therefore provides unique opportunities to test the SM and probe signatures of BSM effects. Already the first CLIC stage provides an important set of measurements using the $e^+e^- \rightarrow t\bar{t}$ process. A theoretically well-defined top-quark mass measurement can be performed in a threshold scan. The pair production and decay of the top quark can be studied at 380 GeV. The higher-energy stages provide complementary information on t\bar{t} production. Additionally, high-energy CLIC operation gives access to the $t\bar{t}H$ final state and to top-quark pair-production in vector boson fusion. The CLIC prospects for top-quark physics have been studied with full detector simulation [10]. In the following, the highlights of the top-physics programme at CLIC are summarised.

Threshold scan The top-quark mass can be measured in a dedicated scan collecting 100 fb$^{-1}$ over several centre-of-mass energy values around the top-quark pair-production threshold. This method allows the extraction of a theoretically well-defined mass, which reduces the overall uncertainty significantly.

A highly pure sample of top-quark events can be selected and used to measure the cross section at each energy point. The top-quark mass is extracted from the evolution of the cross section as a function of \sqrt{s} as shown in Figure 3. At CLIC, a statistical uncertainty on the top-quark mass of 20 MeV can be

Figure 2: CLIC results of (left) the model-independent fit and (right) the model-dependent fit to the Higgs couplings to SM particles [5, 7]. For the top-Higgs coupling, the 3 TeV case has not yet been studied.

Figure 3: Illustration of a top-quark threshold scan at CLIC with a total integrated luminosity of 100 fb$^{-1}$, with an optimised reduced bunch charge scenario [10]. The bands around the central cross section curve show the dependence of the cross section on the top-quark mass and width, illustrating the sensitivity of the threshold scan. The error bars on the simulated data points show the statistical uncertainties of the cross section measurement.
achieved. The total uncertainty of around 50 MeV is currently dominated by the scale uncertainties of the NNNLO QCD prediction for the top threshold region. The extracted mass in the so-called PS scheme can be translated to the \(\overline{\text{MS}} \) mass scheme with a small additional uncertainty of about 10 MeV.

Top-quark pair production The top-quark couplings to the photon and Z boson are precisely predicted by the SM but may receive substantial corrections from BSM physics; for example, theories with extra dimensions and compositeness can modify the couplings significantly. Here we demonstrate the new physics potential of top pair production using SM Effective Field Theory (SM-EFT). SM-EFT extends the SM Lagrangian to include interaction operators of higher dimension. The leading effects are captured by dimension-6 operators weighted by the coefficients \(c_i/\Lambda^2 \) for dimensionless couplings \(c_i \) and a common suppression scale \(\Lambda \). Measurements with different beam polarisation allow the photon and Z boson contributions to be disentangled, while data from two or more different centre-of-mass energies constrain operators whose effects grow with energy. The clean experimental environment allows differential distributions of the top-quark jet energy resolution and b-tagging performance of the CLIC detector. Jet substructure techniques are applied at the higher centre-of-mass energies.

In general, new physics scales from a few up to tens of \(\text{TeV} \) can be reached. Operation at high energy dramatically improves the sensitivity to the 4-fermion operator coefficients \(C_{lq,lB} \), \(C_{lq,lW} \), \(C_{lW,lB} \), and to a lesser extent, to the dipole operator coefficients \(C_{lB} \) and \(C_{lW} \). This result demonstrates the strong benefit of several energy stages for the CLIC physics potential.

Associated production with a Higgs boson

At the second CLIC energy stage, top-Higgs production gives direct access to the top-quark Yukawa coupling. The top Yukawa coupling can be extracted with a precision of 2.9% [5, 10]. In addition, the top-Higgs process is sensitive to a CP-odd contribution to the top-Higgs coupling. The mixing of the CP-even and -odd components can be measured to a precision of 0.07 or better, where \(\phi \) is the mixing angle [10]. In the EFT language of Figure 4, the top-Higgs cross section measured at 3 TeV would improve the knowledge on \(C_{lW} \) to the level of \(10^{-3} \text{TeV}^{-2} \) [9].

2.3. Other processes: Two-fermion and multi-boson production

Two-fermion production and electroweak precision tests Processes of two-fermion to two-fermion scattering are a sensitive probe to new physics. In addition to top-quark pair-production described above, CLIC can investigate charged lepton-pair as well as c\(\bar{c} \) and b\(\bar{b} \) production. As the contribution from four-fermion interactions to the total cross section grows with centre-of-mass energy, the combination of high energy and clean environment at CLIC makes it an ideal choice for these measurements. Deviations from the SM in sensitive observables such as the total cross section and the polar scattering angle in two-fermion production are described within the simplified context of universal new physics by the “oblique parameters” \(S, T, W, \) and \(Y \). While the effects described by the \(S \) and \(T \) parameters are constant with energy, those of the \(W \) and \(Y \) parameters grow. The sensitivities of CLIC to the \(S \) and \(T \) parameters have been shown to be similar to current measurement uncertainties from electroweak precision observables. The precision of \(W \) and \(Y \) measurements, however, will be substantially improved at CLIC by around three orders of magnitude compared with LEP, and one order of magnitude compared with HL-LHC projections [9, Sec. 2.6].
Multi-boson production and vector boson scattering Processes involving two or more electroweak gauge bosons can give hints about new physics in the electroweak sector. BSM amplitudes are distinguished from the SM amplitudes by their behaviour in sensitive observables such as azimuthal and polar decay angles in di-boson production [9, Sec. 2.4]. In the $e^+ e^- \rightarrow W^+ W^-$ process at CLIC, the hadronic decay channel enables the full kinematic reconstruction of the final state. Semi-leptonic final states are advantageous for observables that distinguish between the charges of the reconstructed W bosons. The momentum of the neutrino can be determined better in $e^+ e^-$ collisions than at hadron colliders. As a result, the limits on anomalous triple gauge couplings from CLIC will significantly improve those expected for the HL-LHC. CLIC will furthermore enable inclusive measurements of the production of two and more electroweak gauge bosons in annihilation and vector boson scattering (VBS) [9, Sec. 2.5]. For well-constrained dimension-6 EFT operators, tri-boson production and VBS give strong constraints on dimension-8 operator coefficients.

2.4. Effective field theory fit and interpretation

Figure 5: Summary of the sensitivity to SM-EFT operators c_i/Λ^2 from a global analysis of CLIC’s sensitivities to Higgs couplings, top-quark observables, $W^+ W^-$ production, and two-fermion scattering processes $e^+ e^- \rightarrow f\bar{f}$, for the three CLIC energy stages [9]. Smaller values correspond to a higher scale probed. Preliminary projections for HL-LHC are shown for comparison, under two systematic uncertainty scenarios, S1 and S2. Blue markers correspond to single-operator sensitivities, and yellow markers correspond to results from dedicated individual analyses (for example, the Higgs self-coupling analysis).

CLIC sensitivities to Higgs couplings, top-quark observables, $W^+ W^-$ production, and two-fermion scattering processes $e^+ e^- \rightarrow f\bar{f}$, where $f = c, b, t, e, \mu, \tau$, have all been combined in a global fit using SM-EFT as introduced above in the context of top-quark pair-production. This approach is also well suited for a direct comparison to existing and other future options. The CLIC sensitivity to the operator coefficients c_i/Λ^2 for the operator basis defined in [9, Tab. 2] is shown in Figure 5. In this basis, the Higgs couplings to SM particles are mostly sensitive to c_{HH} for the W and Z bosons, c_{GG} for the gluons and c_γ, for the Yukawa coupling, while c_H is a universal rescaling of all the Higgs couplings. They are probed to high accuracy in Higgs boson production and decay processes at CLIC. c_{WB} and c_T contribute to Higgs couplings, but also to electroweak processes such as two-fermion production. The parameter c_H governs the Higgs self-coupling, and is tested through the direct double-Higgs boson production measurement at CLIC. The operators corresponding to the parameters c_{3W}, c_{2W}, c_{2B}, c_{1W} and c_{1B} have effects that grow with energy. Their measurements clearly benefit most from the high-energy stages. c_{3W} generates transverse anomalous triple gauge couplings which can be probed in di-boson production. The parameters c_{1W} and c_{1B} are related to longitudinal anomalous triple gauge couplings as well as anomalous Higgs couplings, which influence both di-boson and Higgs boson production processes. Finally, the kinetic terms of the electroweak gauge bosons, modified by c_{2W} and c_{2B}, correspond to the W and Y parameters discussed above. These results demonstrate that already the initial stage of CLIC is very complementary to the HL-LHC for many of the operators [9, Sec. 2.9]. The high-energy stages, which are unique to CLIC among all proposed $e^+ e^-$ colliders, are found to be crucial for the precision programme. Overall, CLIC probes the EFT operator coefficients much more precisely than is possible at the HL-LHC.
3. New physics searches

The CLIC potential to explore concrete new physics scenarios, which address several of the fundamental open questions of particle physics, is extensively documented in the literature and summarised in [9, 11–13]. An incomplete selection is described in this section, in order to illustrate the scope and reach of CLIC.

Direct discoveries of new particles CLIC can probe TeV-scale electroweak charged particles, or more generally particles that interact with the SM with electroweak-sized couplings, well above the HL-LHC reach. Such new particles are expected because many of the shortcomings of the Standard Model are inherent to the electroweak sector of the theory. For example particle dark matter candidates can hardly carry any SM charge other than electroweak. Furthermore the electroweak sector may be able to accommodate the violation of baryon number, C and CP necessary for the generation of the baryon/anti-baryon asymmetry of the Universe, as well as to provide a phase transition and the necessary boundaries between phases at which to generate the asymmetry. All unsolved questions about the origin of the masses and mixings of neutrinos and of the other fermions of the SM are related to the weak interactions. In addition, the Naturalness Problem is in essence a question about the peculiarity of weak interactions. A complete exploration of TeV-scale electroweak particles is thus a priority for particle physics.

Any such new particle can be produced at CLIC with sizeable rate up to the kinematic limit of 1.5 TeV, and in some cases up to 3 TeV via single production mechanisms. Depending on the decay channels, different detection strategies are possible.

When new particles decay into standard final states featuring prompt jets, leptons and photons they give rise to signatures that can be distinguished relatively easily from backgrounds. Indeed, backgrounds from SM processes usually have cross sections comparable to the signal, as they are produced via the same electroweak interactions. This is the key advantage of lepton colliders over hadron colliders that makes CLIC outperform the HL-LHC. In most cases the signals can be isolated so clearly that it is possible to measure with precision new particle properties such as mass and spin, and even test concrete models of BSM physics by checking some of their key predictions on new particle properties. The CLIC potential to directly explore new physics is extensively documented in the literature, and in particular in [12, 13], often taking supersymmetric particles as benchmarks. The CLIC direct reach for a variety of BSM scenarios, ranging from non-minimal supersymmetry and extended Higgs sectors, to Dark Matter, Baryogenesis and neutrino mass models, is presented in [9]. Some of these are also documented in the following.

When the new particles give rise to non-standard signatures, e.g. because they decay at a macroscopic distance in the detector volume, it is still possible to isolate these signals thanks to the clean environment typical of e+e− colliders. Relevant examples of this kind of signature include Higgs boson rare decays to long-lived particles [9, Sec. 8], Higgsino Dark Matter, and the search for WIMP baryogenesis models. These results are further discussed below.

Extended Higgs Sector Understanding the nature of the Higgs boson is one of the key elements for a full understanding of the electroweak interactions and in particular of the breaking of electroweak symmetry. A very important question is whether the Higgs is the unique scalar particle at the weak scale, or if instead an extended scalar sector exists. For this reason a key target for future colliders is to investigate the existence of additional Higgs bosons at the TeV scale, which may be the first important step to unravelling the mystery of electroweak symmetry breaking and the origin of the weak scale.

A prototypical example of an extended Higgs sector is the extension of the SM with a new scalar. A particularly challenging case is the one in which the new scalar has no gauge interactions and interacts with the SM only through the Higgs boson portal. This kind of scalar is usually referred to as a “singlet” scalar and arises in concrete models such as the Next-to-Minimal Supersymmetric Standard Model (NMSSM), non-minimal Composite Higgs models as well as Twin Higgs models from “neutral naturalness” solutions to the hierarchy problem of the weak scale. In addition, such a new scalar may affect the Higgs potential and alter the nature of the phase transition between broken and unbroken electroweak
symmetry in the early Universe, thus playing a role in the generation of a net baryon number.

A concrete study of direct production of a new scalar singlet at CLIC is summarised in Figure 6. CLIC sensitivity to direct production of a new scalar singlet extends well beyond the TeV mass scale, at which these new singlets are most motivated. For a mixing between the singlet and the Higgs of \(\sin^2 \gamma < 0.24\% \) the new singlet has to be heavier than 1.5 TeV. Furthermore if a singlet of any mass has mixing \(\sin^2 \gamma > 0.24\% \) it would result in deviations in the single Higgs couplings to SM gauge bosons and fermions in excess of 2 standard deviations for the expected statistical accuracy of Higgs couplings determinations at CLIC. These studies are discussed in detail in [9, Sec. 4.2], where their implications on concrete models are also worked out. It is found that in the case of the NMSSM CLIC can exclude a new scalar lighter than 1.5 TeV for values of \(\tan \beta \leq 4 \), where the NMSSM is most motivated. For Twin Higgs models direct searches bounds generically rule out new scalars below 2 TeV for values of the dynamical scale of the model \(f < 2 \) TeV, where the model is most motivated. Furthermore, the study of Higgs boson couplings yields bounds \(f > 4.5 \) TeV if one assumes that the mass of the scalar is equal or greater than \(f \), as expected for a composite scalar. Results on several concrete models featuring extended scalar sectors with multiple doublets and singlets fields, e.g. the 2-Higgs-Doublets model (2HDM) are described in [9, Sec. 4.3]. CLIC can probe the existence of such new scalars both by direct production and by the indirect effects they have on the 125 GeV Higgs boson couplings. The expected reach extends up to and beyond 1 TeV, improving dramatically on the HL-LHC searches. All in all CLIC is able to thoroughly test extended Higgs sectors and rule out new scalars up to multi-TeV masses. Both direct and indirect signatures can be successfully pursued yielding stringent bounds on new scalar particles that improve by almost one order of magnitude in mass scale on the HL-LHC projections.

![Figure 7: 5σ discovery contours for (left) Higgs compositeness in the \((m_s, g_s) \) plane, overlaid with the 2σ projected exclusions from HL-LHC and (right) top-quark compositeness [9].](image)

Composite Higgs The Higgs boson is the only scalar particle that is predicted in the SM to be exactly point-like. Therefore it is interesting to investigate whether instead it is an extended composite object and, if it is, to determine its geometric size \(l_H \). Discovering the composite nature of the Higgs would be a crucial step towards the understanding of the microscopic origin of the electroweak symmetry breaking phenomenon. Higgs compositeness might also solve or ameliorate the fine-tuning (or Naturalness) Problem associated with the SM Higgs mass parameter. A composite Higgs would manifest itself at CLIC through \(d = 6 \) SM-EFT operators, suppressed by two powers of the Higgs compositeness scale \(m_s \sim 1/l_H^2 \). The operator coefficients are enhanced or suppressed, relative to the naive \(1/m_s^2 \) scaling, by positive or negative powers of a parameter \(\alpha \), representing the coupling strength of the composite sector from which the Higgs emerges. These rules provide estimates for the operator coefficients in the \((m_s, g_s) \) plane and allow translation of the CLIC sensitivity to the SM-EFT into the discovery reach on Higgs compositeness ([9, Sec. 2.10] and references therein), as in Figure 7(left). Given that the estimates only hold up to \(\sim \) coefficients of order one, the discovery contour is not sharply defined, but ranges from a “pessimistic” (for discovery) to an “optimistic” line. Those are obtained by independently varying each \(\alpha \) coefficient in the \([1/2, 2]\) interval and selecting the configuration which is, respectively, less or more favourable for discovery. The projected HL-LHC exclusion (as opposed to discovery, as in the CLIC lines) reach [9, Sec. 2.10] is also shown in the figure, for unit \(\alpha \)-coefficients. The dramatic improvement achieved by CLIC at small and intermediate \(g_s \) is due to the high-energy stages that allow for a very precise determination of the \(c_{\|H}, c_{\|B}, c_{2H} \) and \(c_{2H} \) SM-EFT coefficients. Single Higgs boson couplings measurements instead provide the most stringent constraints at large \(g_s \). Within the same context, and in connection with the Naturalness Problem, top-quark compositeness can also be considered. It produces SM-EFT operators in the top sector that can be probed by measuring the top Yukawa coupling and, very effectively, by \(t \bar{t} \) production at high-energy CLIC. The reach in the “total \(t \bar{t} \) compositeness” scenario is displayed in Figure 7(right). For further details, and for a similar result in the case of “partial top compositeness”, see [9, Sec. 2.10]
and [10, Sec. 10.2].

Dark Matter The microscopic origin of the observed Dark Matter (DM) abundance is one of the greatest mysteries of particle physics. Experimental progress is possible at CLIC in well-motivated corners of the vast landscape of viable DM models, as documented in [9, Sec. 5]. In particular if the DM relic abundance is produced by thermal freeze-out, a compelling “minimal” possibility is that the DM annihilation process proceeds through the familiar SM EW force, rather than through a new not-yet observed interaction. This scenario requires TeV-scale DM mass, and it realises the Weakly Interacting Massive Particle (WIMP) miracle in its most appealing form. WIMP DM has been probed extensively in direct detection experiments. However, other structurally elusive candidates exist, such as the Higgsino doublet and the Wino triplet or, more generally, the so-called “Minimal DM” particles that can exist also in very large (up to the 7-plet) representations of the SM SU(2) group and can have multi-TeV masses. The latter candidates are a target for future colliders. CLIC can probe them in several ways. First, model-independent indirect searches for new EW states can be performed by studying their radiative effects on the EW pair-production of SM particles. The 95% C.L. sensitivities for such searches at CLIC are reported in Figure 8. The sensitivity reaches the thermal mass (i.e., the one which is needed in order to produce the observed thermal abundance by standard thermal production) in the case of the Dirac fermion 3-plet candidate $(1,3,\epsilon)_{\text{DF}}$. Alternatively, one can exploit the fact that the charged component of the Minimal DM multiplet is long-lived, with a macroscopic decay length. Its distinctive signature is thus a “stub” track, which can be long enough to be reconstructed at CLIC if the particle is light enough to be sufficiently boosted.

CLIC can discover the thermal Higgsino at 1.1 TeV with this strategy. CLIC is also sensitive to DM models that fall outside the Minimal DM paradigm, such as co-annihilation and Inert Doublet models as documented in [9, Sec. 5]. More generally, CLIC can effectively probe DM models that have a sufficient mass-splitting to produce signals featuring prompt jets, leptons, and photons plus missing momentum.

Baryogenesis and electroweak phase transition The mechanism responsible for the origin of the asymmetry between baryons and antibaryons in the Universe is currently unknown, and it might be discovered at CLIC if it is related to TeV-scale physics, as in the electroweak baryogenesis scenario. This mechanism requires, among other things, a considerable modification of the SM thermal Higgs potential that should give rise to an EW phase transition of strong first order, unlike the smooth crossover that is predicted by the SM. This is achieved by postulating the existence of new scalar particles coupled with the Higgs, which can be exhaustively probed at CLIC by precise measurements of the Higgs trilinear coupling and of single Higgs couplings, and by direct searches. This is illustrated in Figure 9, where we report the 95% C.L. CLIC reach on the “Higgs plus singlet” model [9, Sec. 6.1]. This is a suitable illustrative benchmark because it contains the minimal amount of new physics (i.e. a scalar singlet S) that is needed to achieve a strong first-order phase transition. The singlet is described by the most general renormalisable Lagrangian and it couples to the SM only through Higgs-portal interactions. The figure displays a slice of the parameter space of the model for singlet mass $m_S = 500$ GeV and singlet mixing $\sin \theta = 0.05$ with the SM Higgs boson. The remaining parameters α_2 and b_1 are respectively the $|H|^2 S^2$ quadratic portal coupling and the S^3 trilinear vertex. The allowed points in the plane are marked as red circles, and those for which the EW phase transition is strong enough are filled in green. All
the green points can be probed both by the trilinear Higgs coupling measurement (black dashed) and by single S production decaying to $HH \rightarrow 4b$ final state (blue dashed). For this particular choice of mixing, the entire plane is probed by single Higgs coupling measurements (grey region). Note however that the effectiveness of single-Higgs couplings (which would be dominant even for $\sin \theta = 0$ due to loop-induced contributions) stems from the fact that this model predicts sharp correlations between the modification of several Higgs vertices, but these correlations might be relaxed in other models. The CLIC capability to perform multiple competitive probes of the scenario instead allows robust conclusions to be drawn [9, Sec. 4.2].

CLIC can also probe TeV-scale Baryogenesis models of radically different nature. In particular the so-called “WIMP baryogenesis” scenario can be considered, where the baryon asymmetry is generated via the baryon number violating decays of TeV-scale long-lived particles. The favourable experimental conditions of CLIC allow unexplored regions of the mass-lifetime parameter space of this model to be probed [9, Sec. 6.2]. In particular, long decay lengths, which are necessary to generate necessary out-of-equilibrium decays in the early Universe, can be explored.

Hidden Sector New physics could manifest itself with light new particles, which have not yet been seen on account of their tiny couplings with SM particles. CLIC can make progress [9, Sec. 8] on the experimental exploration of this scenario in unique corners of its vast parameter space, including particularly well-motivated ones. For example, the clean environment and the absence of a trigger allows CLIC to improve significantly over the HL-LHC in the search for Higgs or Higgs-like bosons decaying to long-lived particles. This will allow CLIC to probe the Fraternal Twin Higgs and Folded Supersymmetry solutions of the Naturalness Problem. CLIC can also search for heavy Axion-Like Particles, in a mass-range that is manifestly outside the reach of dedicated low-energy experiments.

Neutrino Mass Neutrino masses cannot be explained in the Standard Model and they require new physics either in the form of a chiral partner of the left-handed neutrinos, i.e. as a heavy right-handed neutrino, or in the form of new contact interactions between leptons and the Higgs boson. These interactions happen to be non-renormalisable. Hence they require some new physics at higher mass scales to originate them. CLIC has sensitivity to a large set of models in which lepton number is an almost approximate symmetry, which makes it very natural to have small neutrino masses in the form of a Majorana mass. Detailed results can be found in [9, Sec. 7]; here, we give some representative results. For example, in the inverse-see-saw model it is possible to have large Yukawa couplings between the Higgs boson and the right-handed neutrinos, which CLIC can exclude up to 10 TeV mass when the Yukawa coupling is of order one. Even greater reach around tens of TeV is expected for models featuring a doubly charged scalar lepton for Yukawa coupling of order one. Furthermore, CLIC can easily exclude the presence of electroweak charged scalars and fermions, such as the mediators of type-2 and type-3 see-saw models, with masses below 1.5 TeV over the entire parameter space of the models. In particular, for type-2 see-saw CLIC is able to probe the model for any value of the Vacuum Expectation Value (VEV) of the triplet neutral scalar, dramatically improving on the situation of the HL-LHC which is hardly sensitive when the VEV is greater than 100 keV.

Flavour violation The high available energy and the clean experimental conditions make CLIC extremely sensitive to 4-fermion SM-EFT operators that produce Flavour-Changing Neutral Current (FCNC) effects in the lepton and in the quark sector. Operators with the structure $(ee)(\tau\tau)$ and $(ee)(tq)$ induce, respectively, τ plus e and top plus light jet production processes that are extremely rare in the SM, at a rate that grows with the fourth power of the centre-of-mass energy. By searching for these final states, CLIC is sensitive to operator scales in excess of 40 TeV [9, Sec. 3.1]. A comparable sensitivity on τ FCNC operators might be achieved at Belle 2 and at the HL-LHC from $\tau \rightarrow eee$ decays. Top sector operators instead have little chance to be probed at the same level in top decays, where they would produce a tiny exotic branching ratio below around 10^{-12}. Current projections [14] show that more than one order of magnitude improvement in the operator scale is possible at CLIC with respect to the HL-LHC.

Summary of the CLIC discovery reach A brief summary of the CLIC discovery reach for the scenarios discussed here and others is given in Table 2. Where possible, a comparison with HL-LHC projections is given.

4. Conclusions

CLIC offers the unique combination of high collision energies and the clean environment of electron–positron collisions. This enables the guaranteed physics programme of SM-parameter measurements with unprecedented precision, ranging from the top-quark mass and other top-quark properties to the Higgs couplings, including the Higgs self-coupling. In addition, parameters describing deviations from the SM in a model-independent way can be constrained at CLIC with
Table 2: Indicative CLIC reach for new physics. Sensitivities are given for the full CLIC programme covering the three centre-of-mass energy stages. All limits are at 95% C.L. unless stated otherwise. Details on many of these examples are given in [9].

<table>
<thead>
<tr>
<th>Process</th>
<th>HL-LHC</th>
<th>CLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs mixing with heavy singlet</td>
<td>sin²γ < 4%</td>
<td>sin²γ < 0.24%</td>
</tr>
<tr>
<td>Higgs self-coupling $\Delta \lambda$</td>
<td>~ 50% at 68% C.L.</td>
<td>[−7%, 11%] at 68% C.L.</td>
</tr>
<tr>
<td>BR($H \rightarrow \text{inv.}$) (model-independent)</td>
<td>< 0.69% at 90% C.L.</td>
<td></td>
</tr>
<tr>
<td>Higgs compositeness scale m_s</td>
<td>$m_s > 3\text{TeV}$ ($> 7\text{TeV}$ for $g_s \approx 8$)</td>
<td>Discovery up to $m_s = 10\text{TeV}$ (40 TeV for $g_s \approx 8$)</td>
</tr>
<tr>
<td>Top compositeness scale m_\ast</td>
<td></td>
<td>Discovery up to $m_\ast = 8\text{TeV}$ (20 TeV for small coupling g_\ast)</td>
</tr>
<tr>
<td>Higgsino mass (disappearing track search)</td>
<td>$> 250\text{GeV}$</td>
<td>$> 1.2\text{TeV}$</td>
</tr>
<tr>
<td>Slepton mass</td>
<td>$> 550\text{GeV}$</td>
<td>Discovery up to $\sim 1.5\text{TeV}$</td>
</tr>
<tr>
<td>RPV wino mass ($\tau = 300\text{m}$)</td>
<td>$> 7\text{TeV}$</td>
<td>$> 1.5\text{TeV}$</td>
</tr>
<tr>
<td>Z' mass (SM couplings)</td>
<td>Discovery up to 7 TeV</td>
<td>Discovery up to 20 TeV</td>
</tr>
<tr>
<td>NMSSM scalar singlet mass</td>
<td>$> 650\text{GeV}$ ($\tan\beta \leq 4$)</td>
<td>$> 1.5\text{TeV}$ ($\tan\beta \leq 4$)</td>
</tr>
<tr>
<td>Twin Higgs scalar singlet mass</td>
<td>$m_\sigma = f > 1\text{TeV}$</td>
<td>$m_\sigma = f > 4.5\text{TeV}$</td>
</tr>
<tr>
<td>Relaxion mass (for vanishing mixing)</td>
<td>$< 24\text{GeV}$</td>
<td>$< 12\text{GeV}$</td>
</tr>
<tr>
<td>Relaxion mixing angle ($m_\sigma < m_h/2$)</td>
<td>sin²θ ≤ 2.3%</td>
<td></td>
</tr>
<tr>
<td>Neutrino Type-2 see-saw triplet</td>
<td></td>
<td>Discovery up to 1.5TeV (for any triplet VEV)</td>
</tr>
<tr>
<td>Inverse see-saw RH neutrino</td>
<td></td>
<td>$> 10\text{TeV}$ (for triplet Yukawa coupling ≃ 0.1)</td>
</tr>
<tr>
<td>Scale $V_{LL}^{-1/2}$ for LFV ($\bar{e}e$)(\bar{e}\tau)</td>
<td></td>
<td>$> 42\text{TeV}$</td>
</tr>
</tbody>
</table>

a precision well exceeding that of the HL-LHC. This includes the electroweak parameters W and Y measured in twofermion production, and EFT coefficients measured in Higgs and electroweak processes. The staged running in three energy stages at $\sqrt{s} = 380\text{GeV}$, 1.5 TeV, and 3 TeV is important not only to get optimal access to the various processes, but also to probe energy-dependent operators to a level of precision that exceeds that of the HL-LHC by more than one order of magnitude.

Furthermore, CLIC offers a rich potential for extensive exploration of the terascale in the form of direct and indirect searches of BSM effects. Direct searches are often possible up to the kinematic limit for particles with electroweak-sized coupling strength and detectable decay products. New physics effects, for example from scalars in an extended Higgs sector or from a composite Higgs sector, can be found directly or, beyond the kinematic reach, through effects of their mixing with known particles measured in Higgs boson production at CLIC. Long-lived charged particles such as the charged component of minimal dark matter multiplets can give rise to disappearing tracks, for which the clean environment and the detector layout are well suited. The measurement of double Higgs boson production will constrain models of electroweak baryogenesis. Other signatures include the measurement of soft decay products of new particles, e.g. from hidden sectors, which benefits from triggerless running and the clean environment. Additionally, high statistics of top quarks and Higgs bosons allow the search for rare decays indicating for example flavour violation effects. Direct and indirect searches for TeV-scale mediators of neutrino mass generation can provide further insights into the physics of flavour.

The current situation of particle physics is that experiments up to now, including those running at the LHC, could not provide answers to many of the open questions on fundamental interactions. The quest for BSM physics is even more pressing now than in the past. On the other hand, there are no robust hints of new physics at a nearby energy threshold. In this context, an innovative and ambitious project like CLIC with a far-reaching programme of direct and indirect BSM searches to extend the borders of our knowledge into unexplored territories is highly desirable. CLIC combines this with a guaranteed outcome of precision measurements of SM processes and emerges in this context as a particularly appealing option for the future of high energy physics.
References

A. Addendum

A.1. Community

The CLIC accelerator and CLIC Detector and Physics collaborations together comprise around 400 participants from approximately 75 institutes worldwide [1]. Additional contributions are made from beyond the collaborations, in particular from the phenomenology community participating in the wider CLIC Physics Potential Working Group. This document is based on the work reported in the Compact Linear Collider (CLIC) 2018 Summary Report [2] and the CLIC Potential for New Physics Report [9]. The authors of these two reports are listed below.

The CLIC Potential for New Physics

Editors:
Jane de Blas 1 2, R. Franceschini 3, F. Riva 5, P. Roloff 8, U. Schnoor 6, M. Spannowsky 2, J. Wells 7, A. Wuizter 16,9, and J. Zupan 10

1 Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Padova, Italy
2 INFN, Sezione di Padova, Padova, Italy
3 Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Rome, Italy
4 INFN, Sezione di Roma Tre, Rome, Italy
5 Département de Physique Théorique, Université de Genève, Genève, Switzerland
6 CERN, Geneva, Switzerland
7 Institute for Particle Physics Phenomenology, Department of Physics, Durham University, UK
8 Linstead Center for Theoretical Physics, Physics Department, University of Michigan, USA
9 Theoretical Particle Physics Laboratory (LPTP), EPFL, Lausanne, Switzerland
10 Department of Physics, University of Cincinnati, Cincinnati, Ohio, USA

Contributors:

1 Department of Physics, University of California, Santa Barbara, CA, USA
2 Santa Cruz Institute for Particle Physics, Santa Cruz, CA, USA
3 SISSA, Trieste, Italy
4 INFN, Sezione di Trieste, Trieste, Italy
5 Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
6 LIP, Departamento de Física, Universidade do Minho, Braga, Portugal
7 Institute of Theoretical Physics, Eberhard Karls Universität Tübingen, Germany
8 Institute for Particle Physics Phenomenology, Department of Physics, Durham University, UK
9 DESY, Hamburg, Germany
10 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK
11 Laboratoire d’Annécy-le-Vieux de Physique des Particules, France
12 Department of Physics, University of Siegen, Siegen, Germany
13 INFN, Sezione di Pisa, Pisa, Italy
14 Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, USA
15 Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL, USA
16 Department of Physics and Astronomy, University of California, Riverside, CA, USA
17 II. Institute f. Theo. Physics, University of Hamburg, Hamburg, Germany
18 Dept.of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, USA
19 Departamento de Fisica dell’Università di Pisa, Italy
20 INFN, Sezione di Milano, Milano, Italy
21 Physics Department, Technion — Israel Institute of Technology, Haifa, Israel
22 Physics Department, Brown University, Providence, RI, USA
23 Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
24 Weizmann Institute of Science, Rehovot, Israel
25 IFIC (UV/CSIC) Valencia, Spain
26 CERN, Geneva, Switzerland
27 Paul Scherrer Institut, Villigen PSI, Switzerland
28 Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
29 PRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
30 Department of Physics, University of Warwick, Coventry, UK
31 Faculty of Physics, University of Warsaw, Warsaw, Poland
32 Theory Group, Department of Physics, The University of Texas at Austin, Austin, TX, USA
33 Institut für Kern- und Teilchenphysik, TU Dresden, Dresden, Germany
34 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Poland
35 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
36 Département de Physique Théorique, Université de Genève, Genève, Switzerland
37 Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA
38 Centre for Cosmology, Particle Physics and Phenomenology, UC Louvain, Belgium
39 Cavendish Laboratory, University of Cambridge, Cambridge, UK
40 Institute of Physics (IOP), Sachivalaya Marg, Bhubaneshwar, India
41 Institute for Theoretical Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
42 Theoretische Naturwissenschaften und IIHE/ELEM, Vrije Universiteit Brussel, Brussels, Belgium

12
The Compact Linear $\mathrm{e}^+\mathrm{e}^-$ Collider (CLIC) – 2018 Summary Report

T.K. Charles, P.J. Giansiracusa, T.G. Lacas, R.P. Rassool, M. Volpi
University of Melbourne, Melbourne, Australia

C. Balazs
Monash University, Melbourne, Australia

K. Afanasev, V. Makarenko
Belarusian State University, Minsk, Belarus

A. Patapenka, I. Zhuk
Joint Institute for Power and Nuclear Research - Sorosy, Minsk, Belarus

C. Collette
Université libre de Bruxelles, Brussels, Belgium

M.J. Boland
University of Saskatchewan, Saskatoon, Canada

A.C. Abusleme Hoffman, M.A. Diaz, F. Garay
Pontificia Universidad Católica de Chile, Santiago, Chile

Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou
Institute of High Energy Physics, Beijing, China

Tsinghua University, Beijing, China

L. Ma, Y. Han
Shandong University, Jinan, China

W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China

U.I. Uggerhøj, T.N. Wistisen
Aarhus University, Aarhus, Denmark

A. Aabbro, R. Aare, K. Kuppert, S. Vogonski, V. Zadin
University of Tartu, Tartu, Estonia

M. Aicheler, E. Baibuz, E. Brückner, F. Djurabekova, P. Erler, Z.
F. Garcia, E. Haegstöm, K. Huitu, V. Janssen, I. Kassamakov, J.
K. Kim, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, N.
K. Nordlund, K. Österberg, A. Saressalo, J. Väinölä, M. Veske
Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland

W. Farabolini, A. Mollard, F. Peauger, J. Plouin
CEA, CEA-Saclay, France

P. Bambade, I. Chaukovska, R. Chehab, N. Delerue, M. Davier,
Laboratoire de l’Accélérateur Linéaire, Université de Paris-Sud XI,
IN2P3/CNRS, Orsay, France

B. Aimard, G. Balik, J.J. Blaising, L. Brunetti, M. Chefdeville,
A. Dominjon, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie,
LAPP, Université de Savoie, IN2P3/CNRS, Annecy, France

A. Bernhard, E. Bründermann, S. Casalboni, S. Hillenbrand,
J. Gethmann, A. Grau, E. HutteI, A.-S. Müller, P. Peiffer, I. Peri, D.
Saez de JaureguI
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

L. Emberger, C. Graf, F. Simon, M. Szalay, N. van der Kolk
Max-Planck-Institut für Physik, Munich, Germany

S. Brass, W. Kilian
Department of Physics, University of Siegen, Siegen, Germany

T. Apostolopolos, T. Apostolopoulos, E.N. Gazis, N. Gazis,
V. Kostopoulos, S. Kourkouli
National Technical University of Athens, Athens, Greece

B. Heilig
Department of Basic Geophysical Research, Mining and Geological
Survey of Hungary, Tihany, Hungary

J. Lichtenberger
Space Research Laboratory, Eötvös Loránd University, Budapest,
Hungary

P. Shirivastava
Raja Ramanna Centre for Advanced Technology, Department of
Atomic Energy, Indore, India

M.K. Dayyani, H. GhaseM, S. Shaker
The School of Particles and Accelerators, Institute for Research in
Fundamental Sciences, Tehran, Iran

Y. Ashkenazy, I. Popov, E. Engelberg, A. Yashar
Racah Institute of Physics, Hebrew University of Jerusalem,
Jerusalem, Israel

H. Abramowicz, Y. Benhammou, O. Borysov, M. Borysova, A. Levy,
L. Levy
Raymond & Beverly Sackler School of Physics & Astronomy, Tel
Aviv University, Tel Aviv, Israel
D. Alesini, M. Bellaveglia, B. Buonomo, A. Cardelli, M. Diomede, M. Ferrario, A. Gallo, A. Ghigo, A. Gribono, L. Piersanti, A. Stella, C. Vaceverra

INFN e Laboratori Nazionali di Frascati, Frascati, Italy

I. de Blas

Università di Padova and INFN, Padova, Italy

R. Franceschini

Università degli Studi Roma Tre and INFN, Roma, Italy

G. D’Auria, S. Di Mitri

Elettra Sincrotrone Trieste, Trieste, Italy

High Energy Accelerator Research Organization, KEK, Tsukuba, Japan

R. Raboanary

University of Antananarivo, Antananarivo, Madagascar

O.J. Luiten, X-F.D. Stragier

Eindhoven University of Technology, Eindhoven, Netherlands

R. Hart, H. van der Graaf

Nikhef, Amsterdam, Netherlands

G. Eigen

Department of Physics and Technology, University of Bergen, Bergen, Norway

E. Adlon, C.A. Lindström, K.N. Sjobak

University of Oslo, Oslo, Norway

A. Ahmad, H. Hoorani, W.A. Khan

National Centre for Physics, Islamabad, Pakistan

S. Bugiel, R. Bugiel, M. Firlej, T.A. Fiutowski, M. Idzik, J. Moroń, K.P. Święcień

AGH University of Science and Technology, Krakow, Poland

P. Brückman de Renstrom, B. Krupa, M. Kucharczyk, T. Lesiak, P. Brückman de Renstrom, B. Krupa, M. Kucharczyk, T. Lesiak

Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

J. Kalinowski, K. Nowak, A.F. Zarnecki

Faculty of Physics, University of Warsaw, Warsaw, Poland

E. Firu, V. Ghenezescu, A.T. Neagu, T. Preda, I. S. Zgura

Institute of Space Science, Bucharest, Romania

Joint Institute for Nuclear Research, Dubna, Russia

E. Levinev, N. Mezentsev, P. Pimmov, D. Shatilov, P. Vobly, K. Zolotarev

Budker Institute of Nuclear Physics, Novosibirsk, Russia

I. Božović Jelisavčić, G. Kačarević, G. Milutinović Dumbelović, M. Pandurović, M. Radulović, J. Stevanović, N. Vukasinović

Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

D. H Lee

School of Space Research, Kyung Hee University, Yongin, Gyeonggi, South Korea

CELLS-ALBA, Barcelona, Spain

J. Trenado

University of Barcelona, Barcelona, Spain

A. Ruiz-Jimeno, I. Vila

IFCA, CSIC-Universidad de Cantabria, Santander, Spain

J. Calero, M. Dominguez, L. Garcia-Tabares, D. Gavela, D. Lopez, F. Toral

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Ciemat), Madrid, Spain

Instituto de Física Corpuscular (CSIC-UV), Valencia, Spain

R. Brenner, Ch. Borgmann, T. Ekelof, M. Jacewicz, M. Olvegård, R. Ruber, V. Ziemann

Uppsala University, Uppsala, Sweden

CERN, Geneva, Switzerland
Addendum

M. Benoit, D.M.S. Sultan
Département de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, Genève, Switzerland

F. Riva
Département de Physique Théorique, Université de Genève, Genève, Switzerland

M. Bopp, H.H. Braun, P. Craievich, M. Dehler, T. Garvey, M. Pedrozzi, J.Y. Raguin, L. Rivkin1, R. Zemaro
Paul Scherrer Institut, Villigen, Switzerland

S. Guillaume, M. Rothacher
ETH Zurich, Institute of Geodesy and Photogrammetry, Zurich, Switzerland

A. Aciksoy, Z. Nergiz1, O. Yavas
Ankara University, Ankara, Turkey

H. Denizli, U. Keskin, K.Y. Ouyulmaz, A. Senol
Department of Physics, Abant Izzet Baysal University, Bolu, Turkey

A.K. Ciftci
Izmir University of Economics, Izmir, Turkey

Institute of Applied Physics, National Academy of Sciences of Ukraine, Sunny, Ukraine

University of Birmingham, Birmingham, United Kingdom

J. Goldstein
University of Bristol, Bristol, United Kingdom

S. Green, J.S. Marshall35, M.A. Thomson, B. Xu, T. You36
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

W.A. Gillespie
University of Dundee, Dundee, United Kingdom

M. Spannowsky
Department of Physics, Durham University, Durham, United Kingdom

C. Beggan
British Geological Survey, Edinburgh, United Kingdom

V. Martin, Y. Zhang
University of Edinburgh, Edinburgh, United Kingdom

D. Protopopescu, A. Robson1
University of Glasgow, Glasgow, United Kingdom

R.J. Apsimon37, I. Bailey38, G.C. Burl37, A.C. Dexter37, A.V. Edwards37, V. Hil37, S. Janison, W.L. Millar37, K. Pugke37
Lancaster University, Lancaster, United Kingdom

G. Casse, J. Vossebeld
University of Liverpool, Liverpool, United Kingdom

The John Adams Institute for Accelerator Science, Royal Holloway, University of London, Egham, United Kingdom

V. Boisvert, S. West
Royal Holloway, University of London, Egham, United Kingdom

R. Jones, N. Joshi
University of Manchester, Manchester, United Kingdom

D. Bett, R.M. Bodensteiner, T. Bromwich, P.N. Burrow1
G.B. Christian38, C. Gohil1, P. Korysko1, J. Pazskiewicz1, C. Perry, R. Ramjiawan, J. Roberts
John Adams Institute, Department of Physics, University of Oxford, Oxford, United Kingdom

T. Coates, F. Salvatore
University of Sussex, Brighton, United Kingdom

A. Bainbridge37, J.A. Clarke37, N. Krumpa, B.J.A. Shepherd37, D. Walsh3
STFC Daresbury Laboratory, Warrington, United Kingdom

Argonne National Laboratory, Argonne, USA

J. Zupan
Department of Physics, University of Cincinnati, Cincinnati, OH, USA

J.D. Wells, Z. Zhang
Physics Department, University of Michigan, Ann Arbor, MI, USA

SLAC National Accelerator Laboratory, Menlo Park, USA

1 Also at CERN, Geneva, Switzerland
2 Also at Department of Physics, University of Helsinki, Helsinki, Finland
3 Also at CERN, Geneva, Switzerland
4 Now at Johannes-Gutenberg University, Mainz, Germany
5 Now at Nikhef / Utrecht University, Amsterdam / Utrecht, The Netherlands
6 Also at Department of Informatics, Athens University of Business and Economics, Athens, Greece
7 Also at University of Patras, Patras, Greece
8 Also at University of Antananarivo, Antananarivo, Madagascar
9 Also at Warsaw University of Technology, Warsaw, Poland
10 Also at IFIC, Valencia, Spain
11 Now at Paul Scherrer Institute, Villigen, Switzerland
12 Now at CEA, Gif-sur-Yvette, France
13 Also at University of Liverpool, United Kingdom
14 Also at LAL, Orsay, France
15 Also at Uppsala University, Uppsala, Sweden
16 Also at IFCA, CSIC-Universidad de Cantabria, Santander, Spain
17 Now at LBNL, Berkeley CA, USA
18 Now at University of Bonn, Bonn, Germany
19 Now at Nikhef, Amsterdam, The Netherlands
20 Also at KIT, Karlsruhe, Germany
21 Also at Ruprecht-Karls-Universität Heidelberg, Germany
22 Now at University of Texas, Austin, USA
23 Now at Karlsruhe Institute of Technology, Karlsruhe, Germany
24 Now at DESY, Zeuthen, Germany
25 Also at J. Stefan Institute, Ljubljana, Slovenia
26 Also at Vienna University of Technology, Vienna, Austria
27 Also at RWTH Aachen University, Aachen, Germany
28 Now at Johannes Gutenberg Universität, Mainz, Germany
29 Now at Département de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, Geneva, Switzerland
30 Also at Département de Physique Nucléaire et Corpusculaire (DPNC), Université de Genève, Geneva, Switzerland
31 Also at University of Glasgow, Glasgow, United Kingdom
32 Also at Shandong University, Jinan, China
33 Also at EPFL, Lausanne, Switzerland
34 Also at Onur Halis Demir University, Nigde, Turkey
35 Now at University of Warwick, Coventry, United Kingdom
36 Also at DAMTP, University of Cambridge, Cambridge, United Kingdom
37 Also at The Cockcroft Institute, Daresbury, United Kingdom
38 Now at Diamond Light Source, Harwell, United Kingdom