Results on heavy ion physics at LHCb

Giacomo Graziani (INFN Firenze) on behalf of the LHCb Collaboration

Workshop on Discovery Physics at the LHC, Kruger 2018
December 3, 2018
The LHCb experiment

LHCb is the experiment devoted to heavy flavours at the LHC.

Detector requirements:
- **Forward geometry** to optimize acceptance for $b\bar{b}$ pairs: $2 < \eta < 5$
- **Tracking**: optimal resolution for proper time (~ 45 fs) and momentum ($< 1\%$ for $p < 200$ GeV/c)
- **Particle ID**: excellent capabilities to select exclusive decays
- **Trigger**: high flexibility and bandwidth (1 MHz at hardware level, up to 15 kHz to disk)

Some unique features are also attractive for heavy ion physics:
- excellent detector performance, notably for heavy flavour
- forward acceptance
- possibility to run in fixed-target mode

G. Graziani 2018
Kruger 2018
Key feature: detector performance and trigger

- Extreme vertexing performance and excellent PID: ideal to reconstruct heavy flavour states, disentangling charm and beauty components.

No rate limitations from trigger and DAQ for heavy ion runs:
- Large samples of MB events
- Heavy flavour triggers with low p_T thresholds (~ 1 GeV)
- Tracking saturates for most central PbPb collisions
 - LHCb more suited for small collision systems (pA collisions)
 - Crucial environment to understand cold nuclear matter effects and collectivity in small systems
Key feature: forward acceptance

Unique forward coverage at LHC

- Sensitivity to small x (down to $\sim 10^{-5}$)
 - gluon saturation
 - and to anti-shadowing region

- Rapidity dependence can disentangle nuclear effects (energy loss, comovers, ...)
- Nicely complementing other LHC experiments

Arleo and Peigné, Phys. Rev. D95 (2017) 011502
Key feature: the SMOG system

“Fixed-target like” geometry very well suited for... fixed-target physics!

The System for Measuring Overlap with Gas (SMOG) allows to inject small amount of noble gas in the LHC beam pipe around (∼ ±20 m) the LHCb collision region. Turns LHCb into a fixed-target experiment!

Possible targets: He, Ne, Ar, and more in the future

- Typical pressure ∼ 2 × 10^{-7} mbar
- Luminosity up to 10^{30} cm^{-2}s^{-1}

Collisions at $\sqrt{s_{NN}} = \sqrt{2E_{beam}M_p}$

- 41-110 GeV for $E_{beam} = 0.9 - 6.5$ TeV
- relative unexplored energy scale between SPS and LHC experiments

at $\sqrt{s_{NN}} = 110$ GeV, c.m. rapidity is $-2.8 < y^* < 0.2$ backward detector with access to large x value in target nucleon, for different nuclear targets
- study nPDF in antishadowing/EMC region, possible intrinsic heavy quark content in nucleons
pPb collisions
pPb Data sets

Ion = \text{^{208}_{82}Pb}

Forward region:
- \(y^* = y_{lab} - 0.465 \)
- \(pPb: 1.5 < y < 4.0 \)

Backward region:
- \(y^* = -(y_{lab} + 0.465) \)
- \(PbP: -5.0 < y < -2.5 \)

2013 data taking: \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)
- 1.1 nb\(^{-1}\) (Fwd), 0.5 nb\(^{-1}\) (Bwd)

2016 data taking: \(\sqrt{s_{NN}} = 8.16 \text{ TeV} \)
- 13.6 nb\(^{-1}\) (Fwd), 20.8 nb\(^{-1}\) (Bwd)
Very clean sample, down to 0 p_T

Measurement double differential in p_T and rapidity

Powerful probe of gluon PDF at low x

separation of prompt and from-b components, through pseudo-proper time

$$t_z \equiv (z_{J/\psi} - z_{PV}) \times (M/p_z)_{J/\psi}$$
Strong suppression in forward direction
Clearly larger for prompt J/ψ

$$R_{pPb} \equiv \frac{1}{A} \frac{\sigma_{pPb}}{\sigma_{pp}}$$

Compatible with initial-state (nPDF) effects
prompt: HELAC-onia (collinear fact.)
Shao, Comp.Phys.Comm. 198 (2016) 238
from-b: pQCD at FONLL
Cacciari et al, JHEP 05 (1998) 007

Good agreement with (latest) CGC-model prediction
Ducloué et al, PRD94 (2016) 074031
Rapidity dependence can also be explained by coherent energy loss
Arleo and Peigné, JHEP 03 (2013) 122
Results from the smaller sample at 5 TeV show a stronger suppression for $\psi(2S)$, not expected from initial state effects or energy loss.

- Confirms similar findings from PHENIX, ALICE
- Stay tuned for the update from 8 TeV data
Clean separation of three nS states

“Comover” model predicts large final-state effects, larger for excited states and in backward direction

Patterns observed in data support this picture...
...notably for $\Upsilon(3S)$! Smoking gun for comovers?

\[
\frac{R(\Upsilon(2S))/R(\Upsilon(1S))}{R(\Upsilon(3S))/R(\Upsilon(1S))} = 0.86 \pm 0.15,
\]
\[
\frac{R(\Upsilon(2S))/R(\Upsilon(1S))}{R(\Upsilon(3S))/R(\Upsilon(1S))} = 0.81 \pm 0.15,
\]
\[
\frac{R(\Upsilon(2S))/R(\Upsilon(1S))}{R(\Upsilon(3S))/R(\Upsilon(1S))} = 0.91 \pm 0.21,
\]
\[
\frac{R(\Upsilon(2S))/R(\Upsilon(1S))}{R(\Upsilon(3S))/R(\Upsilon(1S))} = 0.44 \pm 0.15.
\]

Understanding this effect is crucial to a correct interpretation of QGP-induced sequential quarkonia suppression observed in PbPb.
Open charm in pPb

- Unique data down to 0 p_T
- Precision measurement already with 5 TeV sample
- Strong suppression at forward rapidity and low p_T seen also here, expected from shadowing
- Data can constrain nPDFs in unexplored area at low x, assuming no other effects.

(Coherent energy loss predicts similar patterns qualitatively)
Charmed baryons in pPb

- Λ_c^+/D^0 ratio is an important input to hadronisation phenomenology
- Baryon enhancement expected from production via coalescence, also affected by thermal properties of the nuclear medium
- Large charmed baryon enhancement observed in central AuAu collisions at RHIC
- ALICE sees no enhancement in pPb collisions: no hint from effect of cold nuclear matter
- Ratio measured by LHCb in 5 TeV pPb data
- Contribution from b decays subtracted using impact parameter distribution
No strong kinematic dependence observed, substantial agreement with predictions in collinear factorisation based on pp data

Need update with 8 TeV data to determine dependence on event activity
Clean signals in exclusive decay modes:

- $B^+ \rightarrow D^0 \pi^+$
- $B^+ \rightarrow J/\psi K^+$
- $B^0 \rightarrow D^- \pi^+$
- $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$

First measurement in nuclear collisions, down to low p_T (< hadron mass)!
Confirming suppression pattern observed in J/ψ from b, consistent with nPDF effect

Λ_b^0/B^0 ratio also measured and found consistent with pp
Photons in pPb

- Direct photons give access to saturation region, unique kinematic reach in LHCb
- Reconstruct photons through conversions inside the tracking system (better resolution than using e.m. calorimeter)
- Two approaches:
 - Extract direct photons from inclusive spectra, after subtracting the π^0/η contribution, normalized at low p_T
 - Exploit correlations with hadrons in inverse Compton processes

Di-jet background measured in data from identified π^0
- First evidence for direct photons from gluons in the potential saturated region

\[x_Pb^{obs} = \frac{p_{T, \gamma} e^{-\eta_\gamma}}{\sqrt{S_{NN}}} + \frac{p_{T, \gamma} e^{-\eta_\eta}}{\sqrt{S_{NN}}} \]
PbPb collisions
LHCb entered PbPb data taking in 2015. About 10 μb recorded by LHCb.

Tracking performance studied: saturation occurs at about 50% centrality.

2018 PbPb run just finished, collected 210μb.

Still interesting physics from peripheral collisions:

- J/ψ photoproduction (low-p_T “excess”)
- $J/\psi/D^0$ ratio and Υ states vs centrality
- Flow for D^0
hadron photo-production enhanced by photon flux ($\propto Z^2$) in PbPb

sensitive to gluon distribution at x down to 10^{-5}, saturation region

coherent and incoherent J/ψ photo-production can be distinguished from p_T shape

limited statistics, but precision of the measurement demonstrated

very good prospects with 2018 data
Collisions on fixed targets
First papers from the first samples collected in 2015 and 2016:
- antiproton production in pHe [PRL 121 (2018), 222001]
- charm production in pAr and pHe [arXiv:1809.01404]
- Large sample ($\sim 100\text{nb}^{-1}$) of pNe collisions acquired at the end of 2017, sample of PbNe collisions at same energy just collected

(at nominal SMOG pressure, 10^{22} POT correspond to 5/nb for 1 m of gas)
SMOG gas pressure not precisely known. Absolute cross sections normalized to p-\(e^-\) elastic scattering.

- Background measured from data, using events with single positive track
- Systematic uncertainty of 6%, due to low electron reconstruction efficiency (~16%)
First charm samples from $pHe@69$ GeV (7.6 ± 0.5 nb$^{-1}$) and $pAr@110$ GeV (few nb$^{-1}$)

First determination of $c\bar{c}$ cross-section at this energy scale
No evidence for sizeable intrinsic charm contribution
Cosmic Antiprotons

- Precision AMS-02 measurements of \bar{p}/p ratio in cosmic rays at high energies, indirect search for Dark Matter \cite{PRL 117, 091103 (2016)}
- Hint for a possible excess, and milder energy dependence than expected
- Prediction for \bar{p}/p ratio from spallation of primary cosmic rays on interstellar medium (H and He) is presently limited by uncertainties on \bar{p} production cross-sections

- Large uncertainties (\sim factor 2) on cross-sections from models of hadronic interactions
- Empirical parameterizations mostly based on SPS pp data, but no previous measurement of \bar{p} production in p-He
- Scaling violations at $\sqrt{s_{NN}} \sim 100$ GeV, poorly constrained
- The LHC energy scale and LHCb +SMOG very well suited to this measurement
pHe Antiprotons results

Result for **prompt** production compared to **EPOS LHC** [PRC92 (2015) 034906]
underestimating \bar{p} prod. by ~ 1.5

QGSJETII-04 [PRD83 (2011) 014018]

QGSJETII-04m [Astr. J. 803 (2015) 54]

HIJING 1.38 [Comp. Phys. Comm. 83 307]

PYTHIA 6.4 (2pp + 2pn) [JHEP 05 (2005) 026]

Visible inelastic cross section compatible with **EPOS LHC**:

$$\frac{\sigma^{\text{LHCb}}_{\text{vis}}}{\sigma^{\text{EPOS-LHC}}_{\text{vis}}} = 1.08 \pm 0.07 \pm 0.03$$

\uparrow excess of \bar{p} yield over EPOS LHC from \bar{p} multiplicity

Prospects:
- Extend to \bar{p} from anti-hyperon decays (20-30% of production)
- Repeat on 4 TeV beam data \Rightarrow measure scaling violations
Prospects

Much more to harvest, notably in pPb:

- More quarkonia states: χ_c, η_c
- $D^0\bar{D}^0$ correlations
- Drell Yan, vector bosons
- dihadron correlations (ridge), BEC
- Flow studies with identified particles

And substantial development of the program in future LHC runs, profiting also from the upgraded detector LHCb-TDR-12 (2012), talk by O.Steinkamp on Thursday
Heavy ions in future LHC Runs

<table>
<thead>
<tr>
<th>Year</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>pp</td>
<td>Ions</td>
</tr>
<tr>
<td>LS 2</td>
<td></td>
<td>Run 3: LHCb upgrade Phase I (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td>pp</td>
<td>Ions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LS 3</td>
<td>Run 4</td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
<td>pp</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td>pp</td>
</tr>
<tr>
<td>Run 4: LHCb upgrade Phase I (b)</td>
<td></td>
<td></td>
<td>LS 4</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>pp</td>
<td>Ions</td>
<td>pp</td>
<td>Ions</td>
</tr>
<tr>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td>pp</td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2031</td>
<td>pp</td>
<td>Ions</td>
<td>pp</td>
<td>Ions</td>
</tr>
<tr>
<td>2032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2033</td>
<td></td>
<td></td>
<td></td>
<td>pp</td>
</tr>
<tr>
<td>2034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run 5: LHCb upgrade Phase II</td>
<td></td>
<td></td>
<td>LS 5</td>
<td></td>
</tr>
</tbody>
</table>

- **pp luminosity will increase by factor 5** in Run 3
- **plans for larger integrated luminosities**, at least **factor 10**, also for **pPb and PbPb** in LHCb
- **Phase II Upgrade in design phase**

 LHCB-TDR-019 (2018): aim at **50 × Run 2 luminosity in pp**

 ➤ dream detector for heavy-ion physics
LHCb is considering an upgraded gas target, consisting in a storage cell located in the proximity of the interaction point. Could be operational already in Run 3

- allows larger gas density where needed ➔ increase luminosity by up to 2 orders of magnitudes with same gas flow
- more gas species possible: hydrogen and deuterium, heavier gas (Kr, Xe)
- precise control of gas density

More proposals for the future (see *Physics Beyond Colliders* forum):

- polarized gas target
- solid target coupled with bent crystal, to study electric and magnetic moments of charmed baryons
- solid microstrip target
LHCb developed a lively and fast growing heavy ion program, with very specific capabilities

First lessons learned, with some unique inputs:

- Heavy flavour states (open charm and beauty, quarkonia) in pPb at large rapidity are in general well described by nPDFs and CGC (when applicable)
- But suppression of excited quarkonia states points to the effect of comoving particles, notably from Υ(3S) in pPb
- No evidence of charmed baryon enhancement from coalescence in pPb
- No evidence of intrinsic charm at large-x (for now) from charm production in fixed target
- Improved knowledge of antiproton production in cosmic-like pHe collisions ➔ better reference for dark matter searches
- Much more data from Run 2 to be analyzed
- And substantial development of the program in the next future
Backup material
Collective phenomena

Dihadron correlations in unique forward acceptance

LHCb Pb+p \(\sqrt{s_{NN}} = 5 \) TeV

1.0 < \(p_T < 2.0 \) GeV/c

Event class 0-3%

LHCb PRELIMINARY

pp \(\sqrt{s_{pp}} = 13 \) TeV

Medium \(p_T \)

High activity class

Scintillator planes covering rapidity 5 to 7.5, can be used as a veto to extend the rapidity gap.

Allow to further improve separation of coherent and uncoherent J/ψ photoproduction.