Studies of B_c mesons at LHCb

Jibo He∗†
University of Chinese Academy of Sciences (UCAS), Beijing, China
E-mail: jibo.he@cern.ch

The B_c meson is formed by two heavy quarks of different flavor, which makes it an interesting laboratory for test of effective theories of the strong interaction with a unique setting for production, decay and spectroscopy studies. This paper presents recent results on the B_c meson from LHCb, including the B_c^+ mass, lifetime and production measurements, search for excited B_c^+ states, observation of the $B_c^+ \to D^0 K^+$ decay, and search for B_c^+ decays to two charm mesons.

ICHEP 2018, XXXIX International Conference on High Energy Physics
4-11 July 2018
COEX, Seoul, Korea

∗Speaker.
†on behalf of the LHCb collaboration.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
Studies of B_c mesons at LHCb

Jibo He

1. Introduction

The B_c meson is formed by two heavy quarks of different flavor, which makes it an interesting laboratory for test of effective theories of the strong interaction with a unique setting for production, decay and spectroscopy studies. The LHCb experiment [1] is one of the four large experiments at the LHC. It has excellent vertexing, tracking and particle identification performance, which makes it an ideal experiment to study the B_c meson. This paper presents recent results on the B_c meson from LHCb, including the B_c^+ mass, lifetime and production measurements, search for excited B_c^+ states, observation of the $B_c^+ \rightarrow D^0 K^+$ decay, and search for B_c^+ decays to two charm mesons.

2. B_c^+ mass, lifetime and production measurements

LHCb has performed the most precise measurements of the B_c^+ mass with the $B_c^+ \rightarrow J/\psi \pi^+$ [2], $B_c^+ \rightarrow J/\psi D^+_s$ [3], $B_c^+ \rightarrow J/\psi p \bar{p} \pi^+$ [4], and $B_c^+ \rightarrow J/\psi D^0 K^+$ [5] decays. Averaging over all these measurements, the B_c^+ mass is determined to be 6274.6 ± 1.0 MeV/c2.

LHCb has measured the B_c^+ lifetime using the $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu X$ [6], $B_c^+ \rightarrow J/\psi \pi^+$ [7] decays. The B_c^+ lifetime is measured to be 509 ± 8 (stat) ± 12 (syst) fs and 513 ± 11 (stat) ± 6 (syst) fs, respectively. These are the most precise measurements to date.

LHCb has performed the first measurement of the double differential production cross-section of the B_c^+ meson as a function of the B_c^+ transverse momentum and rapidity [8]. The B_c^+ production cross-section times branching fraction of $B_c^+ \rightarrow J/\psi \pi^+$ relative to that of the $B^+ \rightarrow J/\psi K^+$ decay is measured to be, $\frac{\sigma(B_c^+) \cdot B(B_c^+ \rightarrow J/\psi \pi^+)}{\sigma(B^+) \cdot B(B^+ \rightarrow J/\psi K^+)} = (0.683 \pm 0.018$ (stat) ± 0.009 (syst))% in the fiducial region $p_T(B) < 20$ GeV/c and $2 < y(B) < 4.5$, where $p_T(B)$ and $y(B)$ are the transverse momenta and rapidity of the B_c^+ and B^+ mesons.

3. Search for excited B_c^+ states

The B_c meson family has a rich spectrum. There are two $B_c(2S)$ states, $B_c(2^1S_0)^+$ and $B_c(2^3S_1)^+$. The $B_c(2^1S_0)^+$ decays to $B_c^+ \pi^+\pi^-$, and $B_c(2^3S_1)^+$ decays to $B_c^+ \rightarrow B_c^0 \gamma \pi^+\pi^-$. The photon from the B_c^+ decay is very soft and is difficult to reconstruct in LHCb. According to studies in Ref. [9], when the photon is missing, the reconstructed $B_c(2^3S_1)^+$ mass is shifted down by the mass difference between the B_c^+ and B_c^+ states, and the mass resolution is only slightly degraded. The $B_c(2S)$ states are searched for with 2 fb$^{-1}$ of proton-proton collision data at 8 TeV taken by the LHCb experiment [10]. There are $3325 \pm 73 B_c^+ \rightarrow J/\psi \pi^+$ signal, however, there is no obvious signal peak in the $B_c^+ \pi^+\pi^-$ invariant mass distribution, as shown in Fig. 1. Upper limits on the ratios of the production cross-sections of the $B_c(2^1S_0)^+$ and $B_c(2^3S_1)^+$ states times the branching fractions of $B_c(2^1S_0)^+ \rightarrow B_c^+ \pi^+\pi^-$ and $B_c(2^3S_1)^+ \rightarrow B_c^+ \pi^+\pi^-$ over the production cross-section of the B_c^+ state are given as a function of their masses. They are found to be between 0.02 and 0.14 at 95% confidence level for $B_c(2^1S_0)^+$ and $B_c(2^3S_1)^+$ in the mass ranges $[6830, 6890]$ MeV/c2 and $[6795, 6890]$ MeV/c2, respectively.
Figure 1: Invariant mass distribution of $J/\psi \pi^+$ with fit projection overlaid (left) and invariant mass distribution of $B_c^+ \pi^+ \pi^-$ (right) [10].

Figure 2: Results of the simultaneous fit to the $D^0 K^+$ (top plot) and $D^0 \pi^+$ (bottom plot) invariant mass distributions in the B_c^+ mass region, including the $D^0 \rightarrow K^- \pi^+$ and $D^0 \rightarrow K^- \pi^- \pi^+$ final states [11].

4. B_c^+ decays

LHCb has performed a search for $B_c^+ \rightarrow D^0 \pi^+$ and $B_c^- \rightarrow D^0 K^+$ decays [11]. The former is cabibbo-favored in the tree level $b \rightarrow u$ transition, while the latter is cabibbo-suppressed in the tree level $b \rightarrow u$ transition but can be enhanced in the $b \rightarrow su\bar{u}$ penguin decays or weak annihilation $\bar{b}c \rightarrow W^+$. Figure 2 shows the $D^0 K^+$ and $D^0 \pi^+$ invariant mass distributions in the B_c^+ mass region, including the $D^0 \rightarrow K^- \pi^+$ and $D^0 \rightarrow K^- \pi^- \pi^+$ final states [11], together with the simultaneous fit results. The $B_c^+ \rightarrow D^0 K^+$ mode is observed with a statistical significance of 5.1σ, while there is no $B_c^+ \rightarrow D^0 \pi^+$ signal yet, which shows that the $B_c^+ \rightarrow D^0 K^+$ is not dominated by the tree level $b \rightarrow u$ transition, but rather by the $b \rightarrow su\bar{u}$ penguin or weak annihilation $\bar{b}c \rightarrow W^+$ diagrams. The branching fraction multiplied by the production rates for B_c^+ relative to B_c^- mesons in the LHCb acceptance is measured to be $(f_c/f_u) \cdot B(B_c^+ \rightarrow D^0 K^+) = (9.3^{+2.8}_{-2.3} (\text{stat}) \pm 0.6 (\text{syst})) \times 10^{-7}$.

A search for decays of B_c^+ to two charm mesons, including $B_c^+ \rightarrow D_s^{(*)+} \bar{D}_s^{(*)0}, D_s^{(*)+} D_s^{(*)0}$, is performed by LHCb [12]. Such decays can be used to measure the CKM-angle γ. Compared to the $B^+ \rightarrow D^0 K^-$ decay, which has an amplitude ratio $r(B) \equiv |A(B^+ \rightarrow D^0 K^-)| / |A(B^+ \rightarrow D^- K^-)| \approx 0.1$, the $B_c^+ \rightarrow D_s^+ \bar{D}_s^0$ decay has a large amplitude ratio $r(B_c^+) \equiv |A(B_c^+ \rightarrow D^0 D_s^+)| / |A(B_c^+ \rightarrow D^- D_s^0)| \approx 1$, resulting in larger CP asymmetry, therefore has better sensitivity to the CKM-angle γ. However,
the B_c^+ production is small, and the B_c^+ lifetime is short. No evidence for a signal is found in the 3 fb$^{-1}$ of data taken by the LHCb experiment during 2011-2012, and upper limits are set on the branching fractions of these twelve B_c^+ decay modes. Take $B_c^+ \rightarrow D_s^+ \bar{D}^0$ as an example, the invariant mass distribution of $D_s^+ \bar{D}^0$ is shown in Fig. 3, and the branching fraction multiplied by the production rates for B_c^+ relative to B^+ mesons in the LHCb acceptance is measured to be \((f_c/f_u) \cdot [B(B_c^+ \rightarrow D_s^+ \bar{D}^0)/B(B^+ \rightarrow D_s^+ \bar{D}^0)] = (3.0 \pm 3.7) \times 10^{-4}\), or the corresponding upper limit is \(< 0.9(1.1) \times 10^{-3}\) at 90% (95%) confidence level.

5. Summary

LHCb has done world-leading works on the B_c physics. The most precise measurements of the B_c^+ mass and lifetime have been performed with several B_c^+ decay modes. The first measurement of the double differential production cross-section of the B_c^+ meson as a function of the B_c^+ transverse momentum and rapidity is performed using the $B_c^+ \rightarrow J/\psi \pi^+$ decay. The excited B_c^+ states are searched for with the largest B_c^+ (low p$_T$) sample but there is no obvious signal yet. The $B_c^+ \rightarrow D^0 K^+$ is observed for the first time. A first search for the B_c^+ decays to two charm mesons is performed, and no signal is found yet.

References