Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch

M. Turner,1,4 E. Adli,2 A. Ahuja,1 O. Apsimon,3,4 R. Apsimon,5,4 A.-M. Bachmann,1,6,7 M. Barros Marin,1 D. Barrientos,1 F. Batsch,1,6,7 J. Batkiewicz,1 J. Bauche,1 V. K. Berglyd Olsen,2 M. Bernardin,1 B. Biskup,1 A. Boccardi,1 T. Bogey,1 T. Bohl,1 C. Bracco,1 F. Braunmüller,6 S. Burger,1 G. Burt,5,4 S. Bustamante,1 B. Buttenschön,8 A. Caldwell,6 M. Cascella,9 J. Chappell,9 E. Chevallay,1 M. Chung,10 D. Cooke,9 H. Damerau,1 L. Deacon,9 L. H. Deubner,11 A. Dexter,5,4 S. Doebert,1 J. Farmer,12 V. N. Fedosseev,1 G. Fior,6 R. Fiorito,13,4 R. A. Fonseca,14 F. Friebe1, L. Garolfi,1 S. Gessner,1 I. Gorgisyan,1 A. A. Gorn,15,16 E. Granados,1 O. Grulke,8,17 E. Gschwendtner,1 A. Guerrero,1 J. Hansen,1 A. Helm,18 J. R. Henderson,5,4 C. Hessler,1 W. Hofle,1 M. Hüther,6 M. Ibis,6,13,4 L. Jensen,1 S. Jolly,9 F. Koeber,9 S.-Y. Kim,10 F. Kraus,11 T. Lefèvre,1 G. LeGodec,1 Y. Li,3,4 S. Liu,19 N. Lopes,18 K. V. Lotov,15,16 L. Maricalva Brun,1 M. Martyanov,6 S. Mazzoni,1 D. Medina Godoy,1 V. A. Minakov,15,16 J. Mitchell,5,4 J. C. Molendijk,1 R. Monpo,2 J. T. Moody,6 M. Moreira,18,1 P. Muggli,6,1 E. Öz,5 E. Ozturk,1 C. Mutin,1 C. Pasquino,1 A. Pardons,1 F. Peña Asmus,6,7 K. Peptone,1 A. Perera,13,4 A. Petrenko,1,15 S. Pitman,1,5,4 G. Plyushchev,1,20 A. Pukhov,2 S. Daly,1 K. Rieger,6 H. Ruhl,21 J. S. Schmidt,1 I. A. Shalimova,16,22 E. Shaposhnikova,1 P. Sherwood,1 L. O. Silva,18 L. Soby,1 A. P. Sosedkin,15,16 R. Speroni,1 R. I. Spitsyn,15,16 P. V. Tuev,15,16 F. Velotti,1 L. Verra,1 V. A. Verziol,19 J. Vieira,19 H. Winke,1 C. P. Welsch,13,4 B. Williamson,3,4 M. Wing,9 B. Woolley,1 and G. Xia3,4

(AWAKE Collaboration)

1 CERN, 1211 Geneva, Switzerland
2 University of Oslo, 0316 Oslo, Norway
3 University of Manchester, M13 9PL Manchester, United Kingdom
4 Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
5 Lancaster University, LA1 4YB Lancaster, United Kingdom
6 Max Planck Institute for Physics, 80805 Munich, Germany
7 Technical University Munich, 80333 Munich, Germany
8 Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
9 UCL, WC1E 6BT London, United Kingdom
10 UNIST, 44919 Ulsan, Republic of Korea
11 Philipps-Universität Marburg, 35032 Marburg, Germany
12 Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
13 University of Liverpool, L69 7ZE Liverpool, United Kingdom
14 ISTC—Instituto Universitário de Lisboa, 1649-026 Lisbon, Portugal
15 Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
16 Novosibirsk State University, 630090 Novosibirsk, Russia
17 Technical University of Denmark, 2800 Lyngby, Denmark
18 GOLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
19 TRIUMF, V6T 2A3 Vancouver, Canada
20 Swiss Plasma Center, EPFL, 1015 Lausanne, Switzerland
21 Ludwig-Maximilians-Universität, 80539 Munich, Germany
22 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090 Novosibirsk, Russia
23 University of Milan, 20122 Milan, Italy

We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1×10^{14} and 7.7×10^{14} electrons/cm3. We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved

(Received 4 September 2018; published 8 February 2019)
Particle-driven plasma wakefield acceleration offers the possibility to accelerate charged particles with average accelerating gradients of the order of GV/m over meter-scale distances [1,2]. The distance over which plasma wakefields can be sustained depends, among other parameters, on the energy stored in the relativistic drive bunch. It was demonstrated that a 42 GeV electron bunch can increase the energy of some trailing electrons by 42 GeV over a distance of 0.85 m [2]. Reaching much higher witness bunch energies would require staging of multiple acceleration stages, each excited by a new drive bunch. Staging is however experimentally challenging [3]. Using acceleration stages, each excited by a new drive bunch.

To reach GV over a distance of 0.85 m [2]. It was demonstrated that a 42 GeV electron bunch can increase the energy of some trailing electrons by 42 GeV over a distance of 0.85 m [2]. Reaching much higher witness bunch energies would require staging of multiple acceleration stages, each excited by a new drive bunch. Staging is however experimentally challenging [3]. Using acceleration stages, each excited by a new drive bunch.

The successful and controlled development of the SSM is a necessary requirement to be able to use long proton bunches to drive large amplitude wakefields and to accelerate particles \((e^+, e^-)\) in these wakefields. Previous work showed self-modulation resulting in the formation of two [18] or a few microbunches [19]. In Ref. [18], the authors claim that the instability grew above seed level, but the-argument is based on simulation results. Results of the Advanced Wakefield Experiment (AWAKE) show forma-

Advanced Wakefield Experiment (AWAKE) show forma-

and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (<15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels.

DOI: 10.1103/PhysRevLett.122.054801

PHYSICAL REVIEW LETTERS 122, 054801 (2019)
When the ionization front is placed near the middle of the proton bunch, the seed wakefields reach an amplitude of a few MV/m, far above the expected noise amplitude of a few tens of kV/m [26]. From this initial seed amplitude, the wakefields and the proton bunch modulation grow along the bunch and plasma.

As shown in Fig. 1(a), to experimentally diagnose proton bunch self-modulation, we measure the structure of the bunch in space and time with a streak camera [20,27] and the time-integrated transverse distribution with imaging stations (IS) [28].

The streak camera produces an image of the transverse bunch distribution as a function of time, with picosecond resolution. As protons traverse an aluminium coated silicon wafer, they emit forward and backward optical transition radiation (OTR). The backward OTR is imaged onto the entrance slit of the streak camera.

Figure 2 shows a streak camera image of the first few modulation periods of the proton bunch for a plasma density of 2.1 × 10^{14} electrons/cm³. We observe regions of higher and lower light intensity along the time axis, corresponding to higher and lower proton densities.

Regions of focused protons are observed at times ~16, ~24, and ~32 ps, defocused protons are observed in between at times ~12, ~20, and ~28 ps. The image clearly shows that the maximum transverse position at which protons are observed increases along the bunch (1.5 mm at around 2 ps to 2.5 mm at around 30 ps), as indicated by the white line in Fig. 2. At later times the defocused proton density falls below the detection threshold of the streak camera.

For our proton bunch with σ_τ \gg λ_{pe} and seeded at the peak, the initial transverse wakefields near the entrance of the plasma and the seed point are either zero or focusing, and their maximum amplitude is essentially constant (or decreasing) over the first wakefield periods. Figure 2 shows periodic zones of focused and defocused protons. This indicates that the wakefields developed to include defocusing fields and that their amplitude increases along the bunch. This clearly demonstrates growth of the self-modulation along the bunch.

On the image, the effect appears to be slightly asymmetric as the light transport optics setup with limited aperture clips the light on the right-hand side of the image.

Since wakefields driven by a train of microbunches increase along the train, protons are defocused to much larger radii further along the bunch. Measurements at the first imaging station [see Fig. 1(a)], located 1.5 m upstream of the streak camera screen, show that the maximum radius of the defocused protons reaches ~7 mm in radius, much larger than the ~2–3 mm visible in Fig. 2.

To overcome the dynamic range limitations of the streak camera and to detect the most defocused protons, we measured the transverse, time-integrated proton bunch charge distribution with two imaging stations (IS) installed ~2 m (IS 1) and ~10 m (IS 2) after the plasma exit [see Fig. 1(a)]. The IS consist of a scintillating Chromox (Al₂O₃:Cr₂O₃) screen mounted inside a stainless steel vacuum vessel. A schematic drawing of the setup of an IS is shown in Fig. 1(b).

The light output of the scintillator is proportional to the energy deposited by the protons in the screen material. Since the energy of all protons remains within ±10 GeV of their initial ~400 GeV, we take the light intensity to be proportional to the number of protons. The emitted light is imaged onto a digital camera.

In order to record at the same time the proton bunch core (~10^9 protons/mm²) and the defocused protons (~10^6 protons/mm²), we split the emitted light with a beam splitter and send it to two cameras: the "core camera" records the entire charge distribution; for the halo camera, we block the light emitted by the bunch core with a mask. The mask is placed in the image plane of the first lens imaging the Chromox screen and is reimaged onto the camera by the second lens.

We show two different measurements at IS 2 (bunch parameters as stated above). Figures 3(a) and 3(b) show the core camera images and Figs. 3(c) and 3(d) show the...
same events as measured by the halo camera. In Figs. 3(a) and 3(c), we show the proton bunch after propagation in 10 m of rubidium vapor at a density of 7.7×10^{14} atoms/cm3 (inferred from measurements of the rubidium density [29]), with no ionizing laser pulse, i.e., no plasma. The images show the transverse distribution of the unmodulated bunch.

Figures 3(b) and 3(d) show the proton distribution after propagation in 10 m of plasma. The ionizing laser pulse copropagated at the center of the proton bunch, creating a plasma with a density of 7.7×10^{14} electrons/cm3. Note that the Figure shows two consecutive events with no change to the optical or camera settings.

The microbunches observed in Fig. 2 and the protons ahead of the laser pulse form the bunch core of Fig. 3(b). The defocused protons acquire a larger diverging angle along the bunch, as suggested by Fig. 2. In Fig. 3(b) they form a faint halo, below detection threshold, but are clearly visible on the halo camera image [Fig. 3(d)]. The effect of the transverse plasma wakefield on the proton bunch is clearly seen in the differences between Figs. 3(c) and 3(d) and is suggested by Figs. 3(a) and 3(b).

Figure 3(e) compares the vertical projections of the measurements shown in Figs. 3(a)–3(d). Since we know the centroid position of the cores as well as the scale factor between the core and halo cameras from measurements without plasma and mask, we can combine the images from the core and halo to form one profile. Without plasma, there is a gap between the profiles, caused by the large difference in attenuation and the limited dynamic range of the cameras. We interpolate the profile between the distribution using a cubic 1D interpolation routine (blue dotted line).

From the images and bunch centroid position, we determine the maximum radius of the self-modulated bunch distribution (as well as its uncertainty) with the contour method described in Ref. [30]. The resulting maximum radius is shown with green bars on Fig. 3(e). The halo is clearly observed in Figs. 3(b) and 3(d) and extents to a radius of $r_{max} = (14.5 \pm 1.0)$ mm.

Figures 3(b), 3(d), and 3(e) show that, with the plasma, the peak intensity of the core image decreases as defocused particles leave the core for the halo. Integrating the areas under the blue and red curves, we find that the total number of counts on the image is conserved at the percent level when normalized to the incoming charge.

The figures also show that this increase in charge density at large radial positions is symmetric around the bunch center (as was the case for all measurements in this Letter). This shows that the self-modulation process developed symmetrically along the plasma and suggests that the nonsymmetric version of the process, known as the hose instability [17], did not develop. This is consistent with numerical results [31,32] that show that, although the two processes have a comparable growth rate, the seeding of the symmetric self-modulation process can suppress the development of the asymmetric process.

The defocused protons at r_{max} experienced the highest product of transverse wakefield amplitude and interaction time with the wakefields, and hence gained the largest transverse momentum. Figure 3(e) shows that, for a plasma density of 7.7×10^{14} electrons/cm3, defocused protons reach to a maximum radius of $r_{max} = (14.5 \pm 1.0)$ mm. The IS 2 is located ~20 m downstream of the plasma entrance, and the protons moving at the speed of light must acquire their transverse momentum before exiting the wakefields within a maximum time corresponding to a length of 10 m of plasma. Their defocusing angle (θ) must thus be between 0.73 mrad (exit wakefield at $z = 0$ m) and 1.45 mrad (exit at $z = 10$ m), which corresponds to a total transverse momentum between 290 and 580 MeV/c.

From the defocusing angle θ, we estimate the average transverse wakefield amplitude ($W_{\perp,\text{av}}$) that must have been

\[
W_{\perp,\text{av}} = \frac{\theta c}{z_{\text{exit}}},
\]

where z_{exit} is the exit position of the protons.
We observe that the minimum function of the proton bunch charge for two plasma electron densities. The support of the Max Planck Society is gratefully acknowledged. This work was supported in parts by the

average wakefield amplitude increases with increasing proton bunch charge. This is as expected since both the initial wakefield amplitude and the growth rate increase with increasing bunch charge [34].

Figure 4 also shows that the lowest limit of the wakefield amplitude is larger than the initial seed amplitude for all measured proton charges, even under the very conservative assumptions used to estimate their values from the experimental data. In all cases presented here, $W_{\perp, \text{av, min}}$ is at least a factor 2.3 larger than the seed wakefield amplitude. At the highest plasma density and with the largest proton bunch population, they are a factor of 4.5 larger. It is clear evidence of the growth of the wakefields from their seed values along the plasma.

It is however also clear that the peak amplitude of the wakefield must be larger than these $W_{\perp, \text{av, min}}$ values since the wakefield amplitude (1) has a nonconstant transverse dependency (zero on-axis and peak at $r = \sigma_z$) and (2) grows along the plasma as stated above.

From simulations results [35], we expect protons to radially exit the wakefields after $\approx 4\, \text{m}$, much earlier than the 10 m used above. Simulations and estimates show that the strongly defocused protons gain most of their transverse momentum over $\sim 0.5–1.5\, \text{m}$, since the wakefields amplitude at the beginning of the plasma is small. The blue diamonds in Fig. 4 show the average transverse wakefield amplitude from the measurements ($W_{\perp, \text{av}}$), assuming protons interact with the plasma over a distance of 1.5 m and exit the plasma at 4 m. In this case the average wakefield amplitude reaches hundreds of MV/m.

Simultaneously to the symmetric defocusing of the protons on IS 1 and 2, we observe the formation of microbunches on the streak camera diagnostic [20,27], see Fig. 2. This is proof for successful radial self-modulation over the 10 m of plasma.

The experimental results presented here show that the time structure of the relativistic proton bunch exiting the 10 m-long plasma is due to periodic defocusing along the bunch. They show that defocusing increases along the bunch and along the plasma. The transverse wakefields causing the defocusing exceed the seed amplitude value ($< 15 \, \text{MV/m}$) and reach over 300 MV/m. The defocusing is symmetric around the bunch propagation axis. These results therefore show that the seeded self-modulation of the proton bunch occurred along the long bunch and suggest that its non-axis-symmetric counterpart, the hose instability, did not develop. Together with the excitation of the transverse wakefields causing the effects reported here come longitudinal wakefields. These components have been used to accelerate externally, low energy injected electrons (10–20 MeV) to multi-GeV energy levels [36] and possibly to hundreds of GeVs or TeVs in the future and for high-energy physics applications [4,37].

The support of the Max Planck Society is gratefully acknowledged. This work was supported in parts by the
Siberian Branch of the Russian Academy of Science (Project No. 0305-2017-0021), a Leverhulme Trust Research Project Grant No. RPG-2017-143, and by STFC (AWAKE-UK, Cockroft Institute core and UCL consolidated grants), United Kingdom; a Deutsche Forschungsgemeinschaft Cockroft Institute core and UCL consolidated grants), Grant No. RPG-2017-143, and by STFC (AWAKE-UK, Siberian Branch of the Russian Academy of Science (Project field acceleration static simulations of beam self-modulation for plasma wake-
2016R1A5A1013277); the Portuguese FCT Korea (Nos. NRF-2015R1D1A1A01061074 and NRF-2016R1A5A1013277); the Portuguese FCT for TRIUMF—Foundation for Science and Technology, through Grants No. CERN/ FIS-TEC/0032/2017, PTDC-FIS-PLA-2940-2014, UID/FIS/ 50010/2013, and SFRH/IF/01635/2015; NSERC and CNRC for TRIUMF’s contribution; and the Research Council of Norway. M. W. acknowledges the support of the Alexander von Humboldt Stiftung and DESY, Hamburg. The AWAKE collaboration acknowledge the SPS team for their excellent proton delivery.

*marlene.turner@cern.ch

