Long lived SUSY searches in ATLAS and CMS

Simone Pagan Griso

Lawrence Berkeley National Lab.

on behalf of the ATLAS and CMS Collaborations

LHCP 2018,
June 7th, 2018
Physics motivation

- Long-lived particles naturally arise in a variety of BSM theories
- In SUSY theories common mechanisms include:
 - small couplings
 - e.g. R-Parity Violation
 - off-shell decays
 - e.g. split-SUSY with squarks mass > 10 TeV
 - phase-space
 - Small mass splitting
 - e.g. AMSB

- Benchmarks often chosen as representative simplified models
 - re-interpretation material is key to ensure full exploration of coverage
Experimental strategy

- Best experimental strategy depends on the properties of the particle

- **Electric charge**
 - charged
 - neutral

- **Mass**
 - ~prompt
 - stable

- **Lifetime**
 - ~prompt
 - stable

- **Decay products**
 - hadrons
 - leptons
 - weakly interacting

Direct detection

- If LLP minimally interacting and escapes detector → \(E_T \)

Indirect detection

- “Isolated” activity inconsistent with expected prompt or instrumental background

- Different parts of ATLAS/CMS detector used depending on signature
Search program

Most recent result

<table>
<thead>
<tr>
<th>ID</th>
<th>C</th>
<th>M</th>
<th>L</th>
<th>n</th>
<th>o</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt analysis (jets+E$_T$)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Run-2</td>
</tr>
<tr>
<td>Displaced vertices in ID</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Run-2</td>
</tr>
<tr>
<td>Displaced vertices in MS</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Run-1</td>
</tr>
<tr>
<td>“Isolated” non-prompt jets</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Run-2</td>
</tr>
<tr>
<td>Displaced jets in Had.Cal.</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Run-1</td>
</tr>
<tr>
<td>Displaced leptons</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>Run-1</td>
</tr>
<tr>
<td>Stopped particles</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Run-2</td>
</tr>
<tr>
<td>Non-prompt photons</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Run-1</td>
</tr>
<tr>
<td>Time-of-flight measurements</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>Run-2</td>
</tr>
<tr>
<td>Disappearing track</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Run-2</td>
</tr>
<tr>
<td>Large ionization deposits</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Run-2</td>
</tr>
</tbody>
</table>

Focus on new results since LHCP 2017
Prompt analyses have sensitivity to “slightly” displaced objects too

Example: long-lived \(\tilde{g} \) benchmark

Multijet search including long-lived model

- efficiency lowers w/ lifetime due to decay outside detector or jets with no associated tracks

- ATLAS relaxed some requirements to increase efficiency for displaced objects

 - Systematics for displaced objects needed to be re-evaluated

 - e.g. JES, B-tagging,...
Complementarity and coverage

- Extensive study for variable R-parity violating couplings
 - Re-interpretation of existing prompt searches in long-lived regimes
- Target decays of LLP to jets within the beam-pipe
- Signal extracted using binned fit of displaced vertices distance d_{VV}
 - dedicated vertex reconstruction algorithm
- Background from mis-measured tracks
 - data-driven, single-vertex position and un-correlation assumption
 - correction for merged vertices and heavy-flavor component

Signal Region

Trigger: Σp_T^{jets}
- $H_T > 800/900 \text{ GeV}$
- ≥ 4 offline jets
- $p_T > 20 \text{ GeV, } |\eta| < 2.5$
- ≥ 2 DV
- $n\text{Tracks} \geq 5$
- $0.1 < \text{“}r(DV)\text{“} < 20 \text{ mm}$
Displaced Vertices with jets

- Best sensitivity for $0.1 \text{ mm} < c\tau_0 < 100 \text{ mm}$
 - No significant excess found
- Results interpreted in simplified models (\tilde{g} and \tilde{t} production)
- Re-interpretation material defining fiducial phase-space
Displaced Vertices with MET

- Displaced vertices (DV) in events with large $E_T (> 200$ GeV)
- Dedicated tracking algorithms studied in detail, very efficient
- Background from hadronic interactions and large-angle accidental crossing
 - exp. $0.02^{+0.02}_{-0.01}$
 - data-driven

Signal Region
- ≥ 1 DV
- $m(DV) > 10$ GeV
- nTracks ≥ 5
- Material map veto
Select isolated jets non compatible with prompt activity

Displaced jets

- H_T-based trigger + track-less jet
- Trackless requirements as main discriminant variables

\[
\alpha_{\text{jet}}(PV) = \frac{\sum_{\text{tracks}} p_T^{\text{tracks}}}{\sum_{\text{tracks}} p_T^{\text{tracks}}} \\
\alpha_{\text{max}} = \max_{PV}(\alpha_{\text{jet}}(PV))
\]

Stopped particles

- Dedicated trigger when no collisions expected
- Search for isolated decays in the calorimeter or muon spectrometer

![Graph showing jets and cross-sections](image)
Disappearing track

- Direct search for charginos with short lifetime
 - ATLAS: pixel-only tracks (4 pixel layers within 12 cm of I.P.) and dedicated signal region for strongly-produced charginos
 - CMS: New High-Level Trigger on E_T (>75 GeV) + isolated 50 GeV track

- Binned likelihood fit to p_T spectrum of isolated tracklets
 - fake and mis-measured tracks dominate expected background

Figure:

- CMS
 - $\tan \beta = 5, \mu > 0$
 - $B(\tilde{\chi}_1^\pm \to \tilde{\chi}_1^0 \pi^\pm) = 100\%$
 - 95% CL limit
 - 95% expected
 - 68% expected
 - Median expected
 - Observed

- ATLAS Preliminary
 - $\sqrt{s} = 13\text{ TeV}, 36.1 \text{ fb}^{-1}$
 - Observed 95% CL limit ($\pm 1 \sigma_{\text{theory}}$)
 - $\tilde{\chi}_i^\pm$ excluded
 - Expected 95% CL limit ($\pm 1 \sigma_{\text{exp}}$)
 - Theoretical line for pure higgsino
 - LEP2 $\tilde{\chi}_i^\pm$ excluded

- Pure-higgsino scenario tested up to ~150 GeV! (first time since LEP)
Conclusions

- SUSY inherently has several mechanisms that can produce massive long-lived particles
 - New analyses have seen significant work on re-interpretation material to allow detailed scans for truly unexplored parameter space

- The reach of prompt searches can extend well into the long-lived domain, more systematic studies of such coverage are being performed

- The potential of the full run-2 dataset is still being explored
 - e.g. the searches often require a good understanding of the detector
 - Future detector upgrades can offer new capabilities in exploring these unique signatures, see Claudia Gemme's talk in UPG/FUT III session
Future prospects

- Several recent studies to ensure a long-lived program at HL-LHC

 - exciting new sensitivity and detector capabilities to explore

See Claudia Gemme's talk in the UPG/FUT III session tomorrow
Disappearing track - ATLAS

- Explicit search for charginos with (only) very short lifetime
 - pixel-only track reconstruction (4 pixel layers within 12 cm of I.P.)
 - dedicated signal region for strongly-produced charginos
- Binned likelihood fit to p_T spectrum of isolated tracklets
 - fake and mis-measured tracks dominate expected background

ATLAS Simulation

Pure-higgsino scenario tested up to ~150 GeV! (first time since LEP)
• Focus on longer lifetimes
 – Veto activity in outer layers of silicon tracker and calorimeter
• New High-Level Trigger on $E_T (>75 \text{ GeV}) +$ isolated 50 GeV track

<table>
<thead>
<tr>
<th>Run period</th>
<th>Estimated number of background events</th>
<th>Observed events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leptons</td>
<td>Spurious tracks</td>
</tr>
<tr>
<td>2015</td>
<td>0.1 ± 0.1</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>2016A</td>
<td>2.0 ± 0.4 ± 0.1</td>
<td>0.4 ± 0.2 ± 0.4</td>
</tr>
<tr>
<td>2016B</td>
<td>3.1 ± 0.6 ± 0.2</td>
<td>0.9 ± 0.4 ± 0.9</td>
</tr>
<tr>
<td>Total</td>
<td>5.2 ± 0.8 ± 0.3</td>
<td>1.3 ± 0.4 ± 1.0</td>
</tr>
</tbody>
</table>

CMS Simulation

- $700 \text{ GeV} \tilde{\chi}_1^\pm$ ($c_\tau = 10 \text{ cm}$)
- $700 \text{ GeV} \tilde{\chi}_1^0$ ($c_\tau = 100 \text{ cm}$)
- $700 \text{ GeV} \tilde{\chi}_1^0$ ($c_\tau = 1000 \text{ cm}$)

Results

- $\tau_{\tilde{\chi}_1^{\pm}}$ [ns]
- $B (\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 \pi^+) = 100$
- 95% CL limit
- 95% expected
- 68% expected
- Median expected
- Observed
Disappearing track: ATLAS-CMS results

• Low lifetime:
 − loss of efficiency from tracking reconstruction
 − pixel-only tracklets allows ATLAS sensitivity to lower lifetimes

• Longer lifetime:
 − loss of efficiency from disappearing track requirement and trigger
 − Current CMS strategy allows better sensitivity to longer lifetimes (using “longer” tracks)
Disappearing tracks – HL-LHC

\(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_2^0 \) production, \(\tan\beta = 5, \mu > 0 \)

ATLAS Simulation
\(\sqrt{s} = 14 \text{ TeV}, L = 3000 \text{ fb}^{-1} \)

All limits at 95% CL
Displaced jets

CMS Jet-Jet: $pp \rightarrow X' X'^0, X'^0 \rightarrow q\bar{q}$

CMS B-Lepton: $pp \rightarrow t\bar{t}^*, t \rightarrow bl$

2.6 fb$^{-1}$ (13 TeV)

$\sigma \times B^2$ upper limit at 95% CL [fb]

σ_0 [X^0] [mm]

m_{X^0} [GeV]

m_t [GeV]

Exp. limit ± σ_{exp}

Obs. limit

m_{X^0} = 50 GeV

m_{X^0} = 100 GeV

m_{X^0} = 300 GeV

Jun 7, 2018 -- LHCP

S. Pagan Griso