The Burkhardt-Cottingham Sum Rule in Perturbative QCD

Guido Altarelli
CERN - Geneva

Bodo Lampe
Max Planck Institut-Munich

Paolo Nason
and

Giovanni Ridolfi
CERN - Geneva

Abstract

We have computed in perturbative QCD the structure function $g_2(x,Q^2)$ of polarized lepton production at order α_s on a quark target of mass m. Upon taking the first moment we find that it vanishes exactly at all orders in m^2/Q^2 as demanded by the validity of the Burkhardt-Cottingham sum rule, contrary to a recent claim.

In a recent paper [1] it was claimed that the Burkhardt-Cottingham (BC) sum rule [2] for the structure function g_2 of polarized deep inelastic scattering:

$$\int_0^1 \frac{dx}{Q^2} g_2(x,Q^2) = 0$$

(1)
is violated at order α_s for a target quark in QCD and an explicit calculation was presented with a non vanishing result. This conclusion is somewhat puzzling because it is well known [3] that in the light cone expansion there is no operator corresponding to a finite value of the BC moment. Thus finding a non vanishing value at order α_s in perturbative QCD would require some very peculiar mechanism to take place. Also in presence of a non vanishing result it would be intriguing to understand how to go from a quark to a nucleon target. In fact, in absence of an operator, the usual place (i.e. the nucleon matrix element) where the structure of the nucleon is hidden would be missing in this case. This issue is made particularly important by the perspective of a near future measurement of g_2 in experiments at CERN, SLAC and HERA. Since the validity of the BC sum rule is one of the planned experimental checks it is essential to know whether the right hand side of eq.(1) is expected to be of order α_s, which at moderate Q^2 is not that small. In view of the conceptual and practical interest of this issue we have made an independent calculation of g_2 at order α_s. Our result is at variance with that of ref.[1] and indeed we find that the BC sum rule is satisfied. In this note we present our calculation and we show that the BC sum rule at order α_s is valid exactly at all orders in m^2/Q^2 and not just in a linear approximation in that ratio. Finally we discuss some further features of our calculation.

In order to define g_2 one starts from the Fourier transform of the forward matrix element between polarized nucleons of the product of two electromagnetic currents which is given by the sum of a symmetric (S) and an antisymmetric (A) tensor [3,4]:

$$W_{\mu\nu} = \frac{-i}{4\pi} \int d^4x \epsilon^{\mu\nu} (p,s) J_{\mu}(x) J_{\nu}(0) \cdot (p,s) = W^S_{\mu\nu} + iW^A_{\mu\nu}$$

(2)
The symmetric part is independent of the polarization and contains the unpolarized structure functions. The antisymmetric part, linear in the polarization vector ϵ_μ, can be written in terms of two structure functions g_1 and g_2:

$$iW^A_{\mu\nu} = \frac{ie}{2m} \epsilon^\alpha \epsilon^\beta \delta_{\mu\alpha} \epsilon_{\nu\beta} q^\lambda \left[\frac{q^2}{(pq)^2} g_1(x,Q^2) + \frac{(pq) x^\lambda - (qs) p^\lambda}{(pq)^2} g_2(x,Q^2) \right]$$

(3)

where p is the target (of mass m) four-momentum, q the virtual photon four-momentum, and x is the Bjorken variable $x = Q^2/(2pq)$. With the present normalisation, at lowest order, $g_1 = 1/2 \epsilon_\mu^\nu \delta(1-x)$ for a target quark of charge q_1. It is simple to show [4] that for longitudinal polarization what matters is the combination $[g_1 - (2m\nu/Q)^2 g_2]$ so that the g_2
contribution is negligible at large Q^2. Instead, for transverse polarization, $iW_{\mu\nu}$ is proportional to $2mQ/Q_1 [g_1 + g_2]$, so that g_1 and g_2 enter with equal coefficients but the whole contribution is of order $1/Q$. Note that, in spite of the factor of m, $W^\mu_{\lambda\nu}$ does not vanish for m=0, because the longitudinal component of s^μ is proportional to 1/m.

It is straightforward to compute $iW_{\mu\nu}$ for a free quark, no matter if massive or massless. In either case it is found that g_2 vanishes (while g_1 is non-vanishing and finite even for m = 0). The quarks must be interacting and/or virtual in order to contribute to g_2. Since the free quark case is so peculiar it is important to ground the discussion of g_2 on the general light cone expansion method. In the light-cone expansion of $iW_{\mu\nu}$, two classes of operators occur [3,4]. For the simplest case of non-singlet channels, one class is represented by the operator of twist 2 given by:

$$\hat{q}_{\lambda i} \gamma^\mu p_{i} [D^\mu_{i_1} \ldots D^\mu_{i_k}] \lambda_{q}, \quad k \geq 0$$

(4)

where λ_i is a flavour matrix. To the second class belong operators that need at least two indices (we call them twist-3 operators), given by:

$$\hat{q}_{\mu i} \gamma^\mu p_{i} [D^\mu_{i_1} \ldots D^\mu_{i_k}] \lambda_{q}, \quad k > 0$$

$$\hat{q}_{\mu i} \gamma^\mu p_{i} [D^\mu_{i_1} \ldots D^\mu_{i_k}] \lambda_{q}$$

(5)

(first antisymmetrise in μ and λ and then symmetrise in all μ:s). The last operator is proportional to the quark mass matrix m. The moments of g_1 and g_2 are given by (only even moments are accessible to the light-cone method):

$$\int_0^{1} dx x^k g_1(x, Q^2) = a_k, \quad k = 0, 2, 4, ...$$

$$\int_0^{1} dx x^k g_2(x, Q^2) = \frac{k}{k+1} (d_k - a_k), \quad k = 2, 4, ...$$

(6)

where a_k and d_k are the matrix elements of the kth operators of twist 2 and 3 respectively.

We see that g_1 is only determined by the twist-2 operator sequence, while the second class of operators only enters in the expression of g_2.

The first important issue about g_2 is whether or not the operators of twist 3 are important. Note that if the twist-3 operators are negligible, i.e. all $a_k = 0$, then g_2 is completely determined in terms of g_1 by the so-called Wandzura–Wilczek relation (WW) [3,5]:

$$g_2 = g_2^{WW} = -g_1 + \int_0^{1} dx x g_1(x, Q^2)$$

(7)

while in general

$$g_2 = g_2^{WW} + \hat{g}_2$$

(8)

with \hat{g}_2 being the contribution from the d_k sequence. Also note that for a free quark the WW sum rule is violated. In fact for a free quark g_2^{WW} is exactly cancelled by \hat{g}_2 because we have said that g_2 is zero for a free-quark target. In this case we can show that the contribution to g_2 is entirely given by the mass operator in eq. (5) which plays a crucial role on determining g_2 for a quark (also at non trivial order in α_0) [6].

Going back to eq. (6) we see that the light-cone approach does not associate an operator to the first moment of g_2. Because of this fact and adding some specific assumptions on the Regge behaviour at small x of the forward photon-hadron amplitude one can derive the BC sum rule, i.e. the vanishing of the first moment of g_2. However, the presence of the factor of k in the r.h.s. of eq. (6) suggests the validity of the (BC) sum rule, eq.(1). In a partonic approach or, more generally, from a field theory point of view, based on, say, Feynman diagrams to all orders, the primary quantities are not moments but x-dependent structure functions. If we imagine one well-defined x density which generates all moments, the simplest thing is to continue the dependence of moments on n to all values of n where the resulting dependence is non-singular. Then one way for the BC sum rule to hold would be that $d_k - 1/k$ for $k > 0$ (we know that a_k is non-singular because the first moment of g_1 is finite). Alternatively one can think of contributions which, at least for $Q^2 \rightarrow \infty$, become proportional to $\ln(x)$; this would make the first moment discontinuous with respect to the extrapolation in n. However, in this case, the corresponding violation of the BC sum rule would not show up from the data at finite x for sufficiently large Q^2.

The real and virtual diagrams that contribute to g_2 at order α_0 are shown in fig.(1). From the tensor $W_{\mu\nu}$ defined in eq.(2) one projects g_2 out by multiplication with the tensor

$$L_{\mu\nu} = \delta_{\mu\nu} [q^2 + (p \cdot q)]$$

(9)

where p, s and q are the initial quark four-momentum, its polarisation four-vector and the virtual photon four-momentum, respectively. One obtains:

$$L_{\mu\nu} W^\mu = -2m(\alpha_0) [1 + m^2(pq)_{2} [Q^2 - (q^2)^2] g_2$$

(10)

One great simplifying element in this calculation is that real and virtual contributions to g_2 are separately finite for $m > 0$, without need to introduce a cutoff for infrared soft gluon divergences. In fact it is well known that soft gluon real emission gives a factorised contribution proportional to the lowest order rate. However we have already mentioned that g_2 is zero at lowest order for a free quark with mass m. Then the real emission term is infrared finite and consequently the virtual contribution is also finite. Similarly there are no ultraviolet divergences, because the q^0 part of the vertex gives a zero contribution to g_2 again due to the vanishing of the lowest order result. Collinear singularities are
regulated by the quark mass. In conclusion no regularisation has to be introduced beyond keeping the mass \(m \) finite.

The calculation of the real part is done by computer algebraic manipulation of the Dirac traces plus reducing the phase space integrals to a few basic ones which could be computed exactly in analytic form. The final result is:

\[
\zeta_2\text{-real} = \frac{C_F a_s}{8\pi} \frac{\xi^2}{4(\xi^2 + 1)^2} \left[c_1 + \frac{2c_2}{\sqrt{4\xi^2 + 1}} \log \frac{2\xi + 1 + \sqrt{4\xi^2 + 1}}{2\xi + 1 - \sqrt{4\xi^2 + 1}} \right]
\]

(11)

with \(r = m^2/Q^2 \) and

\[
c_1 = -\frac{1}{(\xi + 1)^2} \left[52r^3 \xi^3 - 72r^2 \xi^2 + 78r \xi^2 + 32r \xi^2 + 86r^2 + 6r^2 + 12r^2 + 2 + 2r^2 + 51r - 25 \xi + 3r + 13 \right]
\]

(12)

\[
c_2 = \xi \left[16 r^2 + 4 r^2 + 15r + r + 2 \right]
\]

(13)

Note that both \(c_1 \) and \(c_2 \) are proportional to \(\xi \) and vanish at \(\xi = 0 \), so that the BC moment is convergent.

As for the virtual contribution we first observe that self energy diagrams can be disregarded because they give a \(\gamma_5 \) term of no effect on \(g_2 \). The vertex correction can be cast into the form:

\[
V^\mu = e_q \bar{u} (p') F_1(Q^2) \gamma^\mu + \frac{a_s F_2(Q^2)}{4 \pi} \left[q \gamma^\mu \gamma^\nu \gamma^\rho \right] u(p)
\]

(14)

with \(p' = p + q \). For the same reason as above, only \(F_2 \) contributes to \(g_2 \). The function \(F_2 \) was computed in QED in ref.\([8] \) where is given by

\[
\left(F_2(x) \right)_{\text{QED}} = \frac{\log \theta}{1 - \theta^2} ; \quad \theta = -\frac{1 + \sqrt{1 + 4r}}{1 + \sqrt{1 + 4r}}
\]

(15)

Note the limits \(F_2(0) = 1/2 \) and \(F_2(Q^2 = 0) = -m^2/Q^2 \log(m^2/Q^2) + c(m^2/Q^2) \). One can check that the signs are correct by writing the vertex at \(Q^2 = 0 \). By using \(F_1(0) = 1 \), one obtains

\[
V^\mu = \bar{u} (p') \left[\frac{(p + p')^\mu}{2m} + (1 + \frac{a_s}{2\pi} \log \frac{1 + \gamma^\nu}{1 - \gamma^\nu} \right] u(p)
\]

(16)

which is the well known correction to the electron anomalous magnetic moment. Multiplying the QED result for \(F_2 \) by \(C_F = 3 \) and performing a simple algebra one arrives at the result:

\[
\zeta_2\text{-virtual} = -\frac{C_F a_s}{8\pi} \frac{Q^2}{m^2} F_2(Q^2)_{\text{QED}} \delta(1-x)
\]

(17)

From eqs. (11-13) and (17) the announced result of a vanishing first moment of \(g_2 \), according to the BC sum rule in eq.(1), follows identically at all orders in \(r = m^2/Q^2 \).

A linear version in \(m^2/Q^2 \) of eqs. (11-13) and (17) is more transparent and is useful to see the relation with the result of ref.[1]. We find

\[
\zeta_2\text{-real} = \frac{C_F a_s}{8\pi} \frac{\xi}{(1-\xi) x} \left[\frac{1}{(1-x)(x + m^2/Q^2)} - 4 \log \frac{m^2 x(1-x)}{Q^2} \right]
\]

(18)

with the well known definition [4] of the "plus" distribution. Note that potentially important terms proportional to \(1/(\xi + 1)^2 \) which could in principle contribute to the sum rule are in fact suppressed by a factor of \(1-x \) and therefore have been dropped. The difference between eqs.(18-19) and the results of ref.[1] is simply in the 1 that multiplies \(\delta(1-x) \) in eq.(18).

The \(n \)-th moment of \(g_2 \) that is obtained from the sum of eqs. (18,19) is given by:

\[
M_n = \frac{1}{0} \int_0^1 x^n g_2(x,Q^2) = \frac{C_F a_s}{8\pi} \frac{Q^2}{m^2} \left[A_n \log m^2/Q^2 + B_n \right]
\]

(20)

with

\[
A_n = \frac{2n}{n+1} ; \quad B_n = \frac{n+5}{n+1} \sum_{k=1}^n \frac{1}{(n+1)^2} + 4 \frac{n^2}{(n+1)^2} + 1 - \frac{13}{n+1}
\]

(21)

Of course, when \(g_2 \) is given, all its moments can be computed and not only the ones for \(n \) odd which appear in the light cone expansion eq.(6). Once again, note the vanishing of the first moment, \(n=1 \), which corresponds to the BC sum rule. The result for the logarithmic terms is established by the anomalous dimension of the twist-2 operator in eq.(4) (which determines \(V^\mu_{\text{WW}} \) in eq.(7)) and only the mass operator among the twist-3 operators in eq.(5). In fact these are the only operators whose coefficients start at order \(0 \) in \(a_s \). However the mass operator has a non diagonal anomalous dimension matrix with mixings to additional operators involving gluons [7], so that the non diagonal anomalous dimension matrix element also enter.

In conclusion there is no sign of a violation of the BC sum rule in first order perturbative QCD on a target quark. It is well known [3] that the BC sum rule corresponds to a superconvergence sum rule for an amplitude whose imaginary part is \(g_2 \). A violation of
the sum rule corresponds to the presence of a fixed pole or a cut with non-vanishing residue or discontinuity at large Q^2 and clearly there are no such features in low order perturbative QCD. Of course the problem remains of the relation of the present results on g_2 on a target quark with those relevant for the real case of nucleon scattering. In fact we expect light quark mass contributions to the nucleon structure function to be suppressed by a factor m/M. We believe however the quark case is anyway interesting at the conceptual level and a complete clarification of this model is a prerequisite for an understanding of the proton case.

We are grateful to E. Remiddi for pointing out to us the relevance of ref.[8] for our problem.

References

Figure Caption

[1] Relevant real (c,d) and virtual (a,b) diagrams for g_2 at order α_s.