Searches for direct CPV in charm at LHCb

Maxime Schubiger
On behalf of the LHCb collaboration

ICHEP 2018 - Seoul, Korea
6 July 2018
In the Standard Model (SM), charge-parity violation (CPV) in the quark sector comes only from the phase in the CKM matrix. Order of magnitudes too small to explain our matter dominated universe.

→ Look for New Physics (NP) processes that enhance CPV

Direct CPV (or CPV in the decay)
- Difference of decay rate between two CP conjugated states

\[|A(D^0 \rightarrow f)|^2 \neq |A(\bar{D}^0 \rightarrow \bar{f})|^2 \]
Introduction

Why look for CPV in charm?
- Prediction of CPV in charm from the SM are small
 → Lots of room for NP enhancement
- Only way to probe for CPV in up-type hadrons
 → Complementary to other searches in B or K

Why look for CPV in charm at LHCb?
- Largest sample of charm decays
 - Large $c\bar{c}$ cross-section:
 $$\sigma(pp \rightarrow c\bar{c}X) = (2369 \pm 3 \pm 152 \pm 118) \mu b,$$
 at 13 TeV and for $p_T < 8\text{ GeV}/c, 2.0 < y < 4.5$ [JHEP 03 (2016) 159]
 → Large charm yields ($\mathcal{O}(100 \text{ M}) D^0 \rightarrow K^- \pi^+$ tagged decays)
- Good momentum resolution (0.5 – 1%)
- Good tracking efficiency (over 95%)
- Excellent vertex resolution (IP resolution $(15 + 29/p_T) \text{ \mu m}$)
Experimental observable

The experimental observable is not directly A_{CP}, but A_{raw}:

$$A_{raw} = A_{CP} + A_P + A_D + A_{tag}$$

- The production asymmetry A_P: In pp collisions there is an initial anti-quark deficit
- The detection asymmetry A_D: Mesons and anti-mesons have different behaviours in matter
- The tagging asymmetry A_{tag}: The tagging particle also has different behaviour in matter according to its charge
- The CP asymmetry A_{CP}: What we want to measure

$$A_{CP} = \frac{\Gamma(D^0 \rightarrow f) - \Gamma(\bar{D}^0 \rightarrow \bar{f})}{\Gamma(D^0 \rightarrow f) + \Gamma(\bar{D}^0 \rightarrow \bar{f})}$$
At LHCb, we use 2 independent tagging methods:

Prompt

\[D^{*+} \rightarrow D^0 \pi^+ \]

Semileptonic

\[B^- \rightarrow D^0 \mu^- \bar{\nu}_\mu X \]
Detection asymmetry

- Detection asymmetry reduced by flipping magnet polarity regularly
- Residual detection asymmetry due to intrinsic different cross-section between particles of opposite charge when interacting with the detector’s material

![Graph showing cross-section vs. p_{lab} in GeV/c](image)

C. Patrignani et al. (PDG), CPC 40, 100001 (2016) and 2017 update.
Experimental trick

- Difficult to measure the detector asymmetries
- One solution is to analyse 2 similar decays
 - They need to have the same tagging channel
 - e.g. $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$
 - Cancel the detector asymmetries by subtracting the two raw asymmetries

\[
\Delta A_{CP} = A_{raw}(D^0 \to K^+ K^-) - A_{raw}(D^0 \to \pi^+ \pi^-) \\
= A_{CP}(D^0 \to K^+ K^-) + A_P(D^{*+}) + A_D(K^+ K^-) + A_{tag}(\pi^+) \\
- A_{CP}(D^0 \to \pi^+ \pi^-) - A_P(D^{*+}) - A_D(\pi^+ \pi^-) - A_{tag}(\pi^+) \\
= A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-)
\]
Experimental status

- Most precise measurements to date
 - Based on Run 1 data
 - Updated analyses with Run 2 data under way

\[A_{CP}(D^0 \rightarrow K^+ K^-) = (0.4 \pm 1.2 \pm 1.0) \times 10^{-3} \]

\[A_{CP}(D^0 \rightarrow \pi^+ \pi^-) = (0.7 \pm 1.4 \pm 1.1) \times 10^{-3} \]

\[\Delta A_{CP}(D^0 \rightarrow h^+ h^-) = (1.0 \pm 0.8 \pm 0.3) \times 10^{-3} \]

→ In the following slides, I will present a highlight of the latest results
A measurement of the CP asymmetry
difference between $\Lambda_c^+ \rightarrow pK^-K^+$ and
$\Lambda_c^+ \rightarrow p\pi^-\pi^+$

[JHEP 03 (2018) 182]
Dataset: 3.0 fb$^{-1}$, Run 1

Production mode: $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- X$

Raw asymmetry:

$$A_{raw}(f) = A_{CP}(f) + A_P(\Lambda_b^0) + A_{tag}(\mu) + A_D(f)$$

where $f = pK^+K^-, p\pi^+\pi^-$

Removing experimental asymmetries by taking the difference between the two final states

$$\Delta A_{CP} = A_{raw}(pK^+K^-) - A_{raw}(p\pi^+\pi^-)$$

$$= A_{CP}(pK^+K^-) - A_{CP}(p\pi^+\pi^-)$$

Assuming the kinematics is the same for the two final states
The kinematics of the two final states are not the same

→ Reweight the kinematics of $p\pi^+\pi^-$ to pK^+K^-
 - Reweight with decision trees with gradient boosting (GBDT)
 - Reweight for Λ^+_c transverse momentum and pseudorapidity and p transverse momentum
 - limited by statistics of pK^+K^- final state

Quote a weighted asymmetry:

$$\Delta A_{CP}^{wgt} = A_{raw}(pK^+K^-) - A_{raw}^{wgt}(p\pi^+\pi^-)$$

- Weight function published in order to compare with theoretical predictions
ΔA_{CP} in Λ_c^+ decays

Yields

Λ_c^+ → pK^−K^+

N_{sig} = 25190 ± 200

Λ_c^+ → pπ^−π^+

N_{sig} = 161390 ± 580

Results

\[ΔA_{CP}^{wgt} = (3.0 ± 9.1 ± 6.1) \times 10^{-3} \]

- First measurement of CPV parameters in 3-body Λ_c^+ decays.
- No CPV observed.

Maxime Schubiger 6 July 2018 Searches for direct CPV in charm at LHCb
Search for CP violation in the phase space of $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ decays

CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

- Dataset : 3.0 fb$^{-1}$, Run 1
- Production mode : $D^{*+} \rightarrow D^0 \pi^+$
- $N_{\text{sig}} = (1008 \pm 1) \times 10^3$

Parametrisation of the phase space

- Ordering of the particles:
 - For the D^0: $\pi_1 \pi_2 \pi_3 \pi_4 = \pi^+ \pi^- \pi^+ \pi^-$, where largest $m(\pi^+ \pi^-) = m(\pi_3 \pi_4)$
 - For the \bar{D}^0: CP is applied $\pi_1 \pi_2 \pi_3 \pi_4 = \pi^- \pi^+ \pi^- \pi^+$

- 5D phase space:
 - $m(\pi_1 \pi_2), m(\pi_1 \pi_4), m(\pi_2 \pi_3), m(\pi_1 \pi_2 \pi_3), m(\pi_1 \pi_2 \pi_4)$

- Sensitive to local CPV in the phase space
- Model independent unbinned method
- Define a metric to compute the distance between 2 points in the phase space
- Define a test statistic, T

$$T = \sum_{i,j>i}^{n} \frac{\psi_{ij}}{n(n-1)} + \sum_{i,j>i}^{\bar{n}} \frac{\psi_{ij}}{\bar{n}(\bar{n}-1)} - \sum_{i,j}^{n,\bar{n}} \frac{\psi_{ij}}{n\bar{n}}$$

- Build the "no CPV" hypothesis as a set of random permutations of the data
- Compare the value in data to the "no CPV" hypothesis

This is the first application of the energy test to a 4-body decay
2 tests are performed

- P-even test: D^0 vs \bar{D}^0 (i.e. I+II vs III+IV)

Definition of the triple-product:

For the D^0: \[C_T = \vec{p}_1 \cdot (\vec{p}_2 \times \vec{p}_3) \]

For the \bar{D}^0: \[CP(C_T) = -C(C_T) = -\bar{C}_T \]

- P-odd test: $C_T > 0$ vs $C_T < 0$ (i.e. I+IV vs II+III)

<table>
<thead>
<tr>
<th></th>
<th>D^0</th>
<th>\bar{D}^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$C_T > 0$</td>
<td>$-\bar{C}_T > 0$</td>
</tr>
<tr>
<td>II</td>
<td>$C_T < 0$</td>
<td>$-\bar{C}_T < 0$</td>
</tr>
</tbody>
</table>
Results

P-even test

\[p\text{-value} = (4.6 \pm 0.5)\% \]

P-odd test

\[p\text{-value} = (0.6 \pm 0.2)\% \]

P-odd test corresponds to a significance of CPV of 2.7\(\sigma\).
Results
Local asymmetry exceeding 2σ seen in the region of the ρ(770)^0
Measurement of the time-integrated CP asymmetry in $D^0 \to K_S^0 K_S^0$ decays

Submitted to JHEP, [arXiv:1806.01642]
A_{CP} in $D^0 \rightarrow K_S^0 K_S^0$ decays

- Dataset : 2.0 fb$^{-1}$, 2015-2016
- Production mode : $D^{*+} \rightarrow D^0 \pi^+$
- Raw asymmetry :

$$A_{raw}(K_S^0 K_S^0) = A_{CP}(K_S^0 K_S^0) + A_P(D^{*+}) + A_{tag}(\pi^+)$$

- No detection asymmetries from the daughters of the D^0 since they are symmetric
- Removing production and tagging asymmetries by using a control channel $D^0 \rightarrow K^+ K^-$:

$$\Delta A_{CP} = A_{raw}(K_S^0 K_S^0) - A_{raw}(K^+ K^-) = A_{CP}(K_S^0 K_S^0) - A_{CP}(K^+ K^-)$$
Various possible tracks in LHCb:

For this analysis:
- **LL**: the two K_S^0 decay in the VELO and both form long tracks
- **LD**: one K_S^0 decays inside and one decays downstream of the VELO
A_{CP} in $D^0 \rightarrow K_S^0 K_S^0$ decays

Removing specific backgrounds:
A_{CP} in $D^0 \rightarrow K_S^0 K_S^0$ decays

$D^0 \rightarrow K_S^0 K_S^0$

$\bar{D}^0 \rightarrow K_S^0 K_S^0$

$N_{\text{sig}}^{LL} = 759 \pm 32$ \hspace{1cm} LL

$N_{\text{sig}}^{LD} = 308 \pm 26$ \hspace{1cm} LD

Results

- $A_{CP} = (4.2 \pm 3.4 \pm 1.0)\%$
- Compatible with Run 1 result: $A_{CP} = (-2.9 \pm 5.2 \pm 2.2)\%$
- Average: $A_{CP} = (2.0 \pm 2.9 \pm 1.0)\%$
- \rightarrow Catching up with the Belle result
This was a highlight of 3 recent analyses from LHCb

No CPV has been observed in charm yet

Reaching the precision of the theory predictions ($10^{-3} - 10^{-4}$)

New estimate of direct CPV in charm: $\mathcal{O}(10^{-4})$ [Khodjamirian and Petrov, PLB 774 (2017), 235-242]

More promising results with Run 2 are coming

- Already collected 3.7 fb$^{-1}$ between 2015 and 2017
- Expect to have a total dataset (Run 1 + Run 2) of ~ 9.0 fb$^{-1}$ at the end of this year

Working hard towards the upgrade for even better results
BACKUP
The LHCb detector

ECAL
HCAL
Muon Chambers
Magnet
RICH1
VeLo
TT
T1 T2 T3
RICH2

Maxime Schubiger
6 July 2018
Searches for direct CPV in charm at LHCb
Removing specific backgrounds:

\[D^0 \to K^0_S K^0_S \]

\[D^0 \to K^0_S \pi^+ \pi^- \]