Studies with semileptonic decays at LHCb

Matthew Rudolph
Syracuse University
on behalf of the LHCb Collaboration
May 8, 2018
Introduction

Semileptonic b-hadron decays important tests of the Standard Model:
- Measure quark mixing CKM matrix elements $|V_{cb}|, |V_{ub}|$
- Validate understanding of QCD in decays

- More theoretically clean than fully hadronic decays
- Can study lepton flavor universality in charged current (talk by P. Owen)
- Semileptonic decays also useful for many more measurements!
Huge data samples

- Expect almost **100 million reconstructed** semileptonic decays in Runs 1 and 2
- Access to all B flavor decays
- Clean signatures for muonic modes means low non-semileptonic backgrounds

Excellent for measurements such as total cross-section
Large samples also useful for other measurements

CP violation in mixing

Lifetime of B^0_s and D^+_s – see talk by M. Dorigo today
Reconstruction techniques

- Missing at least one neutrino, but still have good handles on kinematics
- Different techniques used, and still room for new ideas

Assuming one neutrino:

Using velocity from reconstructed part:

Preliminary

\[\text{Candidates / (4 MeV/c}^2) \]

\[M^*(\Lambda_0^b K^-) - M^*(\Lambda_0^b) [\text{MeV/c}^2] \]

\[\text{Pulls} \]

\[9.35 < q^2 < 12.60 \text{ GeV}^2/c^4 \]

Data \(\nu_{\tau} \) \(D^* \rightarrow B X')X \nu_l \rightarrow (c D^*H \rightarrow B \nu D^{*+}l \rightarrow B \nu \mu \) D* \rightarrow B Combinatorial \mu Misidentified

New full reconstruction

- Use B_{s2}^* decays to calculate B^+ momentum with no assumption on missing part of decay
- First application to D fractions coming soon
- Promising technique for large future datasets
Studies with baryons

- Previously measured ratio $|V_{ub}|/|V_{cb}|$ using Λ_b^0 decays
- In the future, want to measure $|V_{cb}|$ in this channel
- First step is form factor measurement
$\Lambda_b^0 \rightarrow \Lambda_c^+ \mu \nu$

Form factor measurement

- Differential distributions key for comparisons with Heavy Quark Effective Theory and Lattice QCD
- Necessary to measure CKM parameters ($|V_{cb}|$ in overall factor G)
- Measure form-factors as one Isgur-Wise function ξ_B:

$$q^2 = \text{momentum transfer}^2$$

$$w = \frac{m_{\Lambda_b^0}^2 + m_{\Lambda_c^+}^2 - q^2}{2m_{\Lambda_b^0} m_{\Lambda_c^+}}$$

$$\frac{d\Gamma}{dw} = GK(w)\xi_B^2(w)$$

Kinematic factor
"Backgrounds" are interesting!

- Excited states are backgrounds to ground state decay
- Measure excited Λ_c^+ with $\Lambda_c^+ \pi^+ \pi^-$

- $\Lambda_c(2765)^+$ not well measured previously
Future measurements

- Thousands of excited Λ_c^+ in Run 1 alone
- More data provides large samples of decays to e.g. $D_{(s)1}$ and $D_{(s)2}^*$
- More detailed studies will also help understand feed-down contributions

<table>
<thead>
<tr>
<th>Final state</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda_c(2595)^+\mu^-\bar{\nu}_\mu$</td>
<td>8569 ± 144</td>
</tr>
<tr>
<td>$\Lambda_c(2625)^+\mu^-\bar{\nu}_\mu$</td>
<td>22965 ± 266</td>
</tr>
<tr>
<td>$\Lambda_c(2765)^+\mu^-\bar{\nu}_\mu$</td>
<td>2975 ± 225</td>
</tr>
<tr>
<td>$\Lambda_c(2880)^+\mu^-\bar{\nu}_\mu$</td>
<td>1602 ± 95</td>
</tr>
<tr>
<td>$\Lambda_c^+\mu^-\bar{\nu}_\mu X$</td>
<td>$(2.74\pm0.02) \times 10^6$</td>
</tr>
</tbody>
</table>
Unfolding to w

- Kinematics assume one neutrino in final state
- Unfold using Singular Value Decomposition
- Corrected for acceptance and efficiency
- Final w distribution fit with multiple ansatz
Slope of ξ_B at $w = 1$ is key observable

Measured:

$$\rho^2 = 1.63 \pm 0.07 \pm 0.08$$

Theory:

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice(^1)</td>
<td>$\rho^2 = 1.2^{+0.8}_{-1.1}$</td>
</tr>
<tr>
<td>QCD sum rules(^2)</td>
<td>1.35 ± 0.13</td>
</tr>
<tr>
<td>HQET(^3)</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Comparison to lattice

- Unfold also to q^2
- Comparison with lattice calculation\(^1\) (gray band)
- Also described by single form factor fit (blue line)
- Future studies with normalization channel can extract $|V_{cb}|$

\(^1\) Phys. Rev. D92 (2015) 034503
Future directions

B_c^+ decays

- Results from the $R(J/\psi)$ measurement demonstrate possibility to measure form factor parameters for B_c^+ decays
- 20,000 normalization decays in Run 1 with selection designed for τ
Conclusions

- LHCb continues to accumulate large data samples of semileptonic decays of all flavors
 - Many potential measurements of semileptonic dynamics still to be made
 - Also useful for many other types of measurements
- Developing new analysis ideas that will take advantage of future datasets
- Continue to probe the decay of Λ_b^0 with form factor measurement
- Understanding excited final states necessary for strong future results