Lepton Flavour Universality Tests at LHCb

Vinícius Franco Lima
On Behalf of LHCb Collaboration
Lyon, IPNL, 18/04/18
Lepton Flavour Universality

In the SM, leptons from different families have the same coupling to W and Z bosons.

It is possible to probe the effective couplings in decays of B hadrons in different tree level and FCNC processes.

Measurements using ratios of B decays cancel many of the theoretical uncertainties.

This talk will cover LFU studies in LHCb using 3fb^{-1} @ 7/8 TeV

+ NP Contributions?
LHCb Detector

Excellent vertex resolution

IP_x Resolution: $13\mu m$

Decay Time: $\sim50fs$

Excellent tracking and momentum resolution.

Excellent particle identification capabilities.
LHCb Detector

Excellent vertex resolution

Excellent tracking and momentum resolution.
\[\Delta p/p \sim 0.4 - 0.6\% \]

Excellent particle identification capabilities.

RICH K-\(\pi\)-p ID
99% efficiency \(\mu\) ID
Calo e-gamma ID
LHCb Detector

Excellent vertex resolution

Excellent tracking and momentum resolution.

Excellent particle identification capabilities.

~7 fb⁻¹ of data so far!

LFU in Tree Level Processes
\[R(J/\psi) = \frac{B(B_c^+ \rightarrow J/\psi \tau^+ \nu_\tau)}{B(B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu)} \]

Identical Reconstructed Final state: \(\mu^+ \mu^- \mu^+ \)

Main Backgrounds:
- \(B \rightarrow J/\psi \ h; \ h \) misID as \(\mu \)
- \(B_c \rightarrow J/\psi \ D(\mu \nu \ X) \ X \)
- \(J/\psi \ \mu \) Combinatorial Bkg

Analysis using 3fb\(^{-1}\) Run 1 data

SM Prediction for \(R(J/\psi) \): 0.25 - 0.28 (ref in backup)
In order to calculate signal yield a template fit is used.

Simultaneous fit in m_{miss}^2, B_c lifetime and $Z(E_\mu, q^2)$

Z is a categorical variable separating candidates in bins of E_μ and q^2

Tau decay m_{miss}^2 softer due to 3 missing neutrinos compared to 1 in the μ case.
In order to calculate signal yield a template fit is used.

\[\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \rightarrow J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu)} = 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{syst}) \]

Systematic uncertainties dominated by $B_c \rightarrow J/\psi$ form factors and simulation size.

Result lies within 2σ of prediction from SM.
Use tree-level semileptonic decays to probe possible NP couplings.

\[R(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_\tau)}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_\mu)} \]

\[R(D^*) \text{ SM ratio: } 0.252 \pm 0.003 \]

Main Backgrounds:
- B\(\to\)Charmed Hadrons (DD*)
- B \(\to\) D**\(\nu\)

PRL 115 (2015) 111803
$R(D^*)$

Signal extracted by 3D template fit (q^2, m^2_{miss}, E_μ).

Template obtained from simulated distributions.

Main source of systematic uncertainties is sample size for template generation.

$R(D^*) = 0.336 \pm 0.027 \text{(stat)} \pm 0.030 \text{(syst)}$
R(D*) - Hadronic

Use the hadronic τ decay into 3 charged π.

Charged tracks allow vertexing for identifying τ decay point.

Use already measured BF of to obtain $R(D^*)$ from the relative measurement:

$$\kappa(D^{*-}) \equiv \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_\tau)}{\mathcal{B}(B^0 \to D^{*-}3\pi)}$$

$B^0 \to D^* \to K\pi$ and $B^0 \to D^* \to \mu\nu$, already measured.
R(D*) - Hadronic

Use the hadronic τ decay into 3 charged π.

Yields extracted from a fit to q^2, τ lifetime and kinematical BDT.

Using:

$$B(B^0 \to D^{*-}\mu^+\nu_\mu) = (4.88 \pm 0.10) \times 10^{-2}$$

$$B(B^0 \to D^{*-}3\pi) = (7.23 \pm 0.51) \times 10^{-3}$$

$$R(D^{*-}) = 0.286 \pm 0.019 \text{ (stat)} \pm 0.025 \text{ (syst)} \pm 0.021 \text{ (ext)}$$
R(D*) Status

LHCb results have been incorporated on world average compilation.

Currently R(D*) shows a tension of 3.4σ with respect to SM prediction.

http://www.slac.stanford.edu/xorg/hflav/semi/fpcp17/RDRDs.html
LFU in FCNC Processes
LFU probed with $b\to sll$

Small BR due to FCNC being forbidden in SM at tree level.

NP could produce a noticeable deviation from SM.

Different hadrons H are sensitive to different Wilson Coefficient combinations.

\[R_H \equiv \frac{\int_{4m_{\mu}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2}}{\int_{4m_{\mu}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B \to He^+e^-)}{dq^2}} \]

\[\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb}V_{ts}^* \frac{\alpha_e}{4\pi} \sum_i C_i(\mu)\mathcal{O}_i(\mu) \]
$R(K)$

Measured using a double ratio

$1 < q^2 < 6 \text{ GeV}^2/c^4$

Events treated independently by trigger category.

17

$L0 \ e$
Electron caused trigger

$L0 \ h$

$L0 \ TIS$
Kaon caused trigger

Trigger caused by other particles

$R(K)$ in SM = 1.0029
e.g. PRL 111, 162002 (2013)

$R_K = \frac{\mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \rightarrow K^+ J/\psi (\rightarrow \mu^+ \mu^-))} / \frac{\mathcal{B}(B^+ \rightarrow K^+ e^+ e^-)}{\mathcal{B}(B^+ \rightarrow K^+ J/\psi (\rightarrow e^+ e^-))}$

Electron L0 Trigger J/psi
Electron L0 Trigger Non resonant

$R_K = 0.745^{+0.090}_{-0.074} \text{(stat)} \pm 0.036 \text{(syst)}$

2.6 σ from the SM!
PRL 113, 151601 (2014)
$R(K^*)$

Also using a double ratio method.

4 body final state, K^* reconstructed as $K^-\pi^+$

Use the measured B direction of flight to correct for electron Brem losses.

Corrected mass used as discriminant
$R(K^*)$

Also using a double ratio method.

Measured in two q^2 regions.

Control of efficiencies tested by measuring J/ψ ratio.

$$r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))} = 1.043 \pm 0.006 \pm 0.045$$

All 3 trigger categories combined in the fit.
$R(K^*)$

Also using a double ratio method.

Measured in two q^2 regions.

All 3 trigger categories combined in the fit.
\(R(K^*) \)

Also using a double ratio method.

Measured in two \(q^2 \) regions.

2.1-2.3\(\sigma \) from SM in the low \(q^2 \) bin

2.4-2.5\(\sigma \) from SM in the central \(q^2 \) bin

\[
R_{K^*0} = \begin{cases}
0.66 \pm 0.11 \text{ (stat)} \pm 0.03 \text{ (syst)} & \text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2/c^4 \\
0.69 \pm 0.11 \text{ (stat)} \pm 0.05 \text{ (syst)} & \text{for } 1.1 < q^2 < 6.0 \text{ GeV}^2/c^4
\end{cases}
\]
$B^+ \rightarrow K^+\mu^+\mu^-$ Phase Difference

- Measurement of phase differences between long and short distance contributions.
- Probe whether or not tensions are coming from not well known SM processes.
- About 980,000 B decays in the RunI sample.

B⁺ → K⁺μ⁺μ⁻ Phase Difference

Amplitude described in terms of Wilson Coefficients

Modelling of resonances using relativistic Breit-Wigner

Included in the q² fit: ω, ρ⁰, φ, J/ψ, ψ(2S), ψ(3770), ψ(4040), ψ(4415)

Fit has four solutions, ambiguity on the J/ψ and ψ(2S) phases.

c₇ constrained to SM value
B$^+ \rightarrow K^+\mu^+\mu^-$ Phase Difference

Amplitude described in terms of Wilson Coefficients

Assuming coefficients to be real.

Dominant uncertainty arises from B\rightarrowK Hadronic form factors.

$\mathcal{B}(B^+ \rightarrow K^+\mu^+\mu^-) = (4.37 \pm 0.15 \text{ (stat)} \pm 0.23 \text{ (syst)}) \times 10^{-7}$
Conclusion

Very interesting set of anomalies observed in b-hadron decays.

LHCb has been able to probe very rare $b \rightarrow s \ell \ell$ and challenging $b \rightarrow c \ell \nu$ transitions.

LHCb will update all presented analysis with Run 2 data.

Other decays, such as $\Lambda_b \rightarrow p \ell \ell$, $B \rightarrow \phi \ell \ell$ are being investigated.
Backup
R(J/psi) SM predictions