B decays to open charm

Susan Haines∗†
University of Cambridge
E-mail: haines@hep.phy.cam.ac.uk

Studies of B meson decays to states involving open charm mesons in data recorded by the LHCb experiment have resulted in first observations of several new decay modes, including $B^0 \rightarrow D^{*\pm} K^{\pm}$, $B^0_s \rightarrow D^0 K^0_s$ and $B^+ \rightarrow D^+ K^+ \pi^-$ decays. An upper limit has been placed on the branching fraction of $B^0_s \rightarrow D^0 f_0(980)$ decays. Measurements of other branching fractions, such as those of $B^0 \rightarrow D^{(*)}_s D^{(*)}_s$ decays, are the most precise to date. Additionally, amplitude analyses of $B^0 \rightarrow \bar{D}^{*0} \pi^+ \pi^-$ and $B^0 \rightarrow \bar{D}^{*0} K^+ \pi^-$ decays have been performed, alongside the first CP violation analysis using the Dalitz plot of $B^0 \rightarrow DK^+ \pi^-$ decays.

16th International Conference on B-Physics at Frontier Machines
2-6 May 2016
Marseille, France

∗Speaker.
†On behalf of the LHCb collaboration.
1. Measurement of the $B^0_s \rightarrow D^{(*)}_s + D^{(*)}_s$ branching fractions

The branching fractions of $B^0_s \rightarrow D^{(*)}_s + D^{(*)}_s$ decays provide an important contribution to the inclusive branching fraction for $b \rightarrow c\bar{c}s$ quark transitions. Precise measurements of the branching fractions are therefore vital, allowing model-independent searches for physics beyond the Standard Model to be performed [1]. These measurements can also aid the understanding of hadronisation effects in B^0_s meson decays via the $b \rightarrow c\bar{c}s$ transition. Measurements of the branching fractions have been made using data recorded at LHCb [2], giving the most precise results to date,

$$\mathcal{B}(B^0_s \rightarrow D^{(*)}_s + D^{(*)}_s) = (3.05 \pm 0.10 \pm 0.20 \pm 0.34)\%,$$

$$\mathcal{B}(B^0_s \rightarrow D^{(*)}_s + D^{(*)}_s) = (1.35 \pm 0.06 \pm 0.09 \pm 0.15)\% \text{ and}$$

$$\mathcal{B}(B^0_s \rightarrow D^{(*)}_s + D^{(*)}_s) = (1.27 \pm 0.08 \pm 0.10 \pm 0.14)\%,$$

where the first uncertainties are statistical, the second are systematic and the third arise from the uncertainty on the branching fraction of the normalisation decay $B^0 \rightarrow D^+_s D^−_s$.

2. First observation and measurement of the branching fraction for the decay $B^0_s \rightarrow D^{±}_s K^{±}$

The decay $B^0_s \rightarrow D^{±}_s K^{±}$ has been observed for the first time, using data collected at the LHCb experiment [3]. Its branching fraction relative to that for $B^0_s \rightarrow D^{−}_s \pi^+$ decays has been measured to be $\mathcal{B}(B^0_s \rightarrow D^{±}_s K^{±})/\mathcal{B}(B^0_s \rightarrow D^{−}_s \pi^+) = 0.068 \pm 0.005 \pm 0.003$, where the first uncertainty is statistical and the second is systematic. The measured value of the branching fraction ratio is consistent with theoretical predictions [4]. In future, $B^0_s \rightarrow D^{±}_s K^{±}$ decays could be used to measure the weak phase γ.

3. Observation of $B^0_s \rightarrow \bar{D}^0 K^0_S$ and evidence for $B^0_s \rightarrow \bar{D}^{(*)}_s K^0_S$ decays

Using data recorded at LHCb, the decay $B^0_s \rightarrow \bar{D}^0 K^0_S$ has been observed for the first time, and evidence of the decay $B^0_s \rightarrow \bar{D}^{(*)}_s K^0_S$ has been found [5]. The measured branching fractions are

$$\mathcal{B}(B^0_s \rightarrow \bar{D}^0 K^0_S) = (4.3 \pm 0.5 \pm 0.3 \pm 0.3 \pm 0.6) \times 10^{−4} \text{ and}$$

$$\mathcal{B}(B^0_s \rightarrow \bar{D}^{(*)}_s K^0_S) = (2.8 \pm 1.0 \pm 0.3 \pm 0.2 \pm 0.4) \times 10^{−4},$$

where the first uncertainties are statistical, the second are systematic, the third are due to the ratio of fragmentation fractions (f_s/f_c) and the fourth arise from the uncertainty on the branching fraction of the normalisation decay $B^0 \rightarrow \bar{D}^0 K^0_S$. These values are consistent with theoretical predictions [6]. The normalisation decay is itself of interest because it could be used to measure γ under the assumption that the $f_0(980)$ meson has a predominant $s\bar{s}$ component [7, 13]. No significant signal is observed in the data, so upper limits on the branching fraction of $\mathcal{B}(B^0_s \rightarrow \bar{D}^0 f_0(980)) < 3.1(3.4) \times 10^{−6}$ are set at 90% (95%) confidence level.

4. Search for the decay $B^0_s \rightarrow \bar{D}^0 f_0(980)$

A search for $B^0_s \rightarrow \bar{D}^0 f_0(980)$ decays has been performed using LHCb data [9]. Measurements of the relative production of scalar mesons in B^0_s meson decays provide insight into their substructure [10]; $\mathcal{B}(B^0 \rightarrow \bar{D}^0 f_0(980))$ has already been measured [11, 12]. Additionally, $B^0 \rightarrow \bar{D}^0 f_0(980)$ decays could be used to measure γ, under the assumption that the $f_0(980)$ meson has a predominant $s\bar{s}$ component [7, 13]. No significant signal is observed in the data, so upper limits on the branching fraction of $\mathcal{B}(B^0_s \rightarrow \bar{D}^0 f_0(980)) < 3.1(3.4) \times 10^{−6}$ are set at 90% (95%) confidence level.

1The inclusion of charge conjugate processes is implied throughout this contribution.
5. First observation of the rare $B^+ \rightarrow D^+ K^+ \pi^-$ decay

Using data collected at LHCb, the decay $B^+ \rightarrow D^+ K^+ \pi^-$ has been observed for the first time [14] with a branching fraction of $\mathcal{B}(B^+ \rightarrow D^+ K^+ \pi^-) = (5.31 \pm 0.90 \pm 0.48 \pm 0.35) \times 10^{-6}$, where the uncertainties are statistical, systematic and due to the uncertainty on the branching fraction of the normalisation decay $B^+ \rightarrow D^- K^+ \pi^+$ [15], respectively. Figure 1 shows the corresponding weighted invariant mass distribution for the candidate decays. The Dalitz plot, also shown in Figure 1, appears to be dominated by broad structures; angular distributions are used to search for quasi-two-body contributions from $B^+ \rightarrow D_s^0(2460)^0 K^+$ and $B^+ \rightarrow D^+ K^+(892)^0$ decays, but no significant signals are seen and upper limits are therefore set on their branching fractions.

In the future, decays of the type $B^+ \rightarrow D^{**} K^+$, where D^{**} represents an excited state such as $D_s^0(2460)^0$ that can decay to both $D^\pm \pi^\mp$ and D_{s0}^0, could be used to measure γ [16].

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Weighted invariant mass distribution (left) and background-subtracted Dalitz plot distribution (right) of candidate $B^+ \rightarrow D^+ K^+ \pi^-$ decays [14]. Areas of boxes in the Dalitz plot are proportional to signal yields.}
\end{figure}

6. Dalitz plot analysis of $B^0 \rightarrow \bar{D}^0 \pi^+ \pi^-$ decays

An amplitude analysis of the decay $B^0 \rightarrow \bar{D}^0 \pi^+ \pi^-$ has been performed using LHCb data [12]. In the phase-space region $m(\bar{D}^0 \pi^+) > 2.1$ GeV/c^2, the branching fraction of the decay is measured to be $\mathcal{B}(B^0 \rightarrow \bar{D}^0 \pi^+ \pi^-) = (8.46 \pm 0.14 \pm 0.29 \pm 0.40) \times 10^{-4}$, where the first uncertainty is statistical, the second is systematic and the third arises from the uncertainty on the branching fraction of the normalisation decay $B^0 \rightarrow D^+(2010)^+ \pi^-$. The Dalitz plot, shown in Figure 2, is analysed using a model with four components for $\bar{D}^0 \pi^-$ resonances, four P-wave $\pi^+ \pi^-$ resonances, one D-wave $\pi^+ \pi^-$ resonance and two alternative model contributions for the $\pi^+ \pi^-$ S-wave components. The complex coefficients and fit fractions for the components of the model are determined from the data. The presence of a resonant structure is confirmed at $m(\bar{D}^0 \pi^-) \approx 2.8$ GeV/c^2, with its spin-parity of $J^P = 3^-$ established for the first time; the branching fractions, masses and widths of this resonant structure and the $D_0^0(2400)^-$ and $D_s^0(2460)^-$ resonances are determined. The branching fractions of $B^0 \rightarrow \bar{D}^0 h^0(\rightarrow \pi^+ \pi^-)$ decays are also measured, many with the highest precision to date, and several decays are observed for the first time. As well as studying the rich resonant structure of the $B^0 \rightarrow \bar{D}^0 \pi^+ \pi^- \pi^-$ decay, the amplitude analysis is an initial step towards a measurement of the CKM angle β [17]. Furthermore, $B^0 \rightarrow \bar{D}^0 \pi^+ \pi^- \pi^-$ decays offer sensitivity to physics beyond the Standard Model [18].

\footnote{Here, and in Section 8, D denotes a superposition of the D^0 and \bar{D}^0 states decaying to the same final state (in Section 5, specifically a CP eigenstate).}
Figure 2: Dalitz plot distribution of candidate $B^0 \rightarrow D^0 \pi^+ \pi^-$ decays [12]. The red line indicates the kinematic boundary of the Dalitz plot.

7. Amplitude analysis of $B^0 \rightarrow D^0 K^+ \pi^-$ decays

An amplitude analysis of $B^0 \rightarrow D^0 K^+ \pi^-$ decays in LHCb data has also been performed [19]. The Dalitz plot is analysed using an amplitude model with components for $K^*(892)^0$, $K^*(1410)^0$, $K_2^*(1430)^0$ and $D_2^*(2460)^-$ resonances, a $K\pi$ S-wave component, and $D\pi$ S- and P-wave components. The masses and widths of the $D_0^*(2400)^-$ and $D_2^*(2460)^-$ resonances are measured and are found to be consistent with those determined in the analysis of $B^0 \rightarrow D^0 \pi^+ \pi^-$ decays described in Section 6; the complex amplitudes and fit fractions for all amplitude model components are also determined.

8. Constraints on the unitarity triangle angle γ from Dalitz plot analysis of $B^0 \rightarrow DK^+ \pi^-$ decays

Using an amplitude model derived from the results of Ref. [19], described in Section 7, the first CP violation analysis using the Dalitz plot of $B^0 \rightarrow D(\rightarrow K^+\pi^-)$, K^+K^-, $\pi^+\pi^-$) $K^+\pi^-$ decays to measure γ [20] has been performed with data recorded at LHCb [21]. Due to the ability to exploit interference between different contributions to the decay, this method obtains additional sensitivity compared to the quasi-two-body analysis, where only the $K^*(892)^0$ resonance region of the Dalitz plot is used. No significant CP violation effect is observed; constraints are placed on γ using the $B^0 \rightarrow DK^*(892)^0$ contribution to the decay, with no value of γ excluded at 95% confidence level, as shown in Figure 3. Hadronic parameters required to determine γ from quasi-two-body analyses of $B^0 \rightarrow DK^*(892)^0$ decays are also measured. These measurements provide important input to the determination of γ from a combination of $B \rightarrow DK$ analyses using LHCb data [22].

9. Conclusions and prospects

Many recent studies of B meson decays to open charm have been performed using data recorded by the LHCb experiment, resulting in first observations of several decay modes and world-best measurements of others. There are also excellent prospects for the future use of some of these decays for CP violation measurements, including measurements of the CKM angles γ and β. Studies of further decay modes and analysis updates to include new data collected at the LHCb experiment will provide additional and improved measurements in the near future.
Acknowledgement

The speaker expresses her gratitude for the generous support of the Leverhulme Trust in funding her participation in the conference.

References

[5] LHCb collaboration, Observation of $B_s^0 \rightarrow D^0 K_S^0$ and evidence for $B_s^0 \rightarrow D^* K_s^0$ decays, Phys. Rev. Lett. 116 (2016) 161802 [arXiv:1603.02408]

[9] LHCb collaboration, Search for the decay $B_s^0 \rightarrow D^0 f_0(980)$, JHEP 08 (2015) 005 [arXiv:1505.01654]

[21] LHCb collaboration, Constraints on the unitarity triangle angle γ from Dalitz plot analysis of $B^0 \rightarrow D K^+ \pi^-$ decays, Submitted to Phys. Rev. Lett. [arXiv:1602.03455]
[22] S.-F. Cheung, these proceedings; LHCb collaboration, Measurement of the CKM angle γ from a combination of $B \rightarrow D K$ analyses, LHCb-CONF-2016-001 (2016)