Opto-Box

Mini-Crate for ATLAS Pixel and IBL Detector Optical Modules

ATLAS is a toroidal general-purpose particle detector based at the Large Hadron Collider (LHC) at CERN.
The Pixel and IBL detectors are the innermost systems, they provide crucial tracking and vertexing functions.
These detectors produce electronic signals, which must be converted to optical signals for read out.
The opto-box is a custom mini-crate for housing optical modules (opto-boxes), which process and transfer this optoelectronic data.
The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x12x8 cm³.
Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance.
Many novel solutions were developed for the custom design and manufacturing.

Summary

• During the first LHC long shutdown (LS1) we moved the optoelectronic signal transceiver modules of the ATLAS Pixel Detector (opto-boxes) to a new location outside of the inner detector. This was motivated by past pixel module failures in order to increase ease of access to the system during future data taking runs. This system needed to fit into available space, so a custom mini-crate (opto-box) was designed, constructed and loaded with new opto-boxes. Much thought was given to high-density system integration, especially cable and thermal management. New high reliability opto-boxes (including application-specific integrated circuits, or ASICs) were also developed and produced. In addition, this system was implemented to support the new Insertable B-Layer (IBL) of pixel modules also installed during LS1 – where the pixel opto-box has 24 slots and the IBL opto-box has 15. In total, fourteen opto-boxes have been installed on the ATLAS detector.

The opto-boxes provide ATLAS Pixel and IBL detectors with reliable, tightly integrated, and serviceable mini-crates and modules for the optoelectronic data transfer system. They are currently operational as an integral part of data collection for LHC run 2.

David Bertsche, The University of Oklahoma – for the ATLAS collaboration