SINGLETONS AND SUPERSTRINGS

M. Günyaydin
Lawrence Livermore Laboratory, UC, Livermore CA 94550
and LBL, Berkeley CA 94720

B.E.W. Nilsson
CERN - Geneva

C. Sierra
Univ. Complutense, Madrid 3

and

P.K. Townsend
DAMTP - Cambridge

ABSTRACT

We show that the type IIA, IIB and heterotic superstring actions can be interpreted as the \((\mathfrak{so}_8,\mathfrak{so}_8)\), \((\mathfrak{so}_8,\mathfrak{so}_8)\) and \((\mathfrak{so}_8,0)\) superconformally invariant two-dimensional singleton field theories of the three-dimensional anti-de Sitter supergroups \(\text{OSp}(8/2,\mathbb{R})_c \otimes \text{OSp}(8/2,\mathbb{R})_s\), \(\text{OSp}(8/2,\mathbb{R})_c \otimes \text{OSp}(8/2,\mathbb{R})_c\) and \(\text{OSp}(8/2,\mathbb{R})_c \otimes \text{Sp}(2,\mathbb{R})\), respectively.

*) This work was supported in part by the US Department of Energy under contract No W-7405-Eng-48.
In any Lagrangian field theory invariant under the Poincaré group, the covariant fields describing particles of a given spin s transform as a finite dimensional non-unitary representation of the Lorentz group. However, the particle states created by the operator Fourier modes of these fields form the basis of a unitary representation of the Poincaré group. Similarly the Fourier modes of a field in four-dimensional anti-de Sitter space (adS_4) form the basis of a unitary representation of the adS_4 group SO(3,2). In 1963, Dirac\(^1\) discovered two remarkable unitary irreducible representations (UIR) of the adS_4 group SO(3,2) whose Poincaré limit is singular. These representations are referred to as singletons\(^2\) and have no Poincaré analogues and no obvious field theoretic interpretation. One way to understand them is in terms of extreme gauge fields whose gauge invariance is such as to allow them to be gauged away everywhere, except at the boundary of adS space\(^3\). This interpretation is supported by the analysis of a number of Kaluza-Klein supergravity theories for which the (supersymmetric) ground state is of the form adS_\(n\) x S\(^m\). For example, the modes in adS_4 that result from a compactification of d = 11 supergravity on S\(^7\) can be grouped into unitary irreps (= irreducible representations) of the adS supergroup OSp(8/4,\(\mathbb{R}\))\(^4\),5\). The singleton irreps\(^5\),6\) of this supergroup indeed appear in the harmonic expansion on S\(^7\) of the d = 11 fields\(^7\),5\), but can be gauged away. This state of affairs is repeated for the S\(^4\) compactification of d = 11 supergravity to d = 7\(^8\), where the relevant adS supergroup is OSp(8*/4) \(\cong\) OSp(6,2/4), and for the S\(^5\) compactification of chiral N = 2, d = 10 supergravity to d = 5, where the relevant adS supergroup is SU(2,2/4)\(^9\). In each case the fields of the singleton supermultiplet that can be gauged away are precisely those of the maximally supersymmetric and conformally invariant matter (spins <1) field theory of one dimension lower\(^10\). Thus, the relevant singleton irrep of OSp(8/4,\(\mathbb{R}\)) consists of the fields of a d = 3, N = 8 multiplet with spins (0,\(\frac{1}{2}\)), while the "singleton" irrep of OSp(8*/4) consists of the fields of the d = 6, N = 4 antisymmetric tensor multiplet, and the "singleton" irrep of SU(2,2/4) consists of the fields of the d = 4, N = 4 super Yang-Mills multiplet. This result is not surprising since the adS_4 group acts as the conformal group in (d-1)-dimensional Minkowski space. The purpose of this letter is to show that the same interpretation can be given to the singleton supermultiplets of the d = 3 adS supergroups. In a recent work\(^10\) three of us have classified these

\(^1\) Actually, the corresponding supermultiplets in d = 5 and 7 are referred to as doubleton supermultiplets for reasons explained in 5 and the last reference in 8). In this paper, we shall refer to all these supermultiplets generically as singleton supermultiplets.
supergroups and constructed the positive energy (lowest weight) UIR's of a large class of these supergroups. The novel feature that arises for $d = 3$ is that the adS$_3$ group SO(2,2) is not simple and factorizes as

$$ \text{SO}(2,2) \cong \text{SO}(2,1) \otimes \text{SO}(2,1) \cong \text{Sp}(2,\mathbb{R}) \otimes \text{Sp}(2,\mathbb{R}). $$

Thus the extension to an adS$_3$ supergroup can be done in a variety of ways and one ends up with a rich class of adS supergroups10. Of interest here are those adS$_3$ supergroups for which one or both Sp(2,\mathbb{R}) factors is extended to OSp(2N/2,\mathbb{R}) because the supergroups of this form have singleton irreps. In particular, we shall focus on those cases for which one or the other factor is the supergroup OSp(8/2,\mathbb{R}).

The "positive energy" (lowest weight) unitary irreps of OSp(2N/2,\mathbb{R}) decompose into infinite dimensional irreps of Sp(2,\mathbb{R}), transforming according to some finite dimensional irreps of SO(2N). The irreps of Sp(2,\mathbb{R}) that occur are all of the lowest weight type and can be labelled by the $U(1)\subset$ Sp(2,\mathbb{R}) quantum number λ_0 of the lowest weight vector. There are two singleton irreps of OSp(2N/2,\mathbb{R}) and they decompose under the even subgroup SO(2N)\otimesSp(2,\mathbb{R}) as follows10

$$ S^1 = \left[(00...01), \lambda_0 = \frac{1}{2} \right] \oplus \left[(00...01), \lambda_0 = \frac{1}{2} \right], \quad (1) $$

$$ S^2 = \left[(00...01), \lambda_0 = \frac{1}{2} \right] \oplus \left[(00...10), \lambda_0 = \frac{3}{2} \right], \quad (2) $$

where the Dynkin labels (00...01) and (00...10) refer to the two half-spin representations of SO(2N). The odd generators of OSp(2N/2,\mathbb{R}) transform as the finite dimensional (2N,2) representation of SO(2N)\otimesSp(2,\mathbb{R}). Acting on the singleton supermultiplet they interpolate between the two UIR's of Sp(2,\mathbb{R}) transforming in the two half-spin representations of SO(2N). For SO(8) the half-spin representations are eight-dimensional just as the vector representation. Thus the singleton supermultiplets of OSp(8/2,\mathbb{R}) have the decomposition

$$ S^1 = \left(\begin{array}{c} \theta \end{array}, \lambda_0 = \frac{1}{2} \right) \oplus \left(\begin{array}{c} \theta \end{array}, \lambda_0 = \frac{1}{2} \right), \quad (3) $$

$$ S^2 = \left(\begin{array}{c} \theta \end{array}, \lambda_0 = \frac{1}{2} \right) \oplus \left(\begin{array}{c} \theta \end{array}, \lambda_0 = \frac{3}{2} \right), \quad (4) $$
where \(8_v\) and \(8_c\) are the two half-spin representations of \(SO(8)\). Now the representations of \(SO(8)\) exhibit the unique triality symmetry which does not extend to general \(SO(2N)\) (\(N \neq 4\)). This is a reflection of the cyclic symmetry of the \(SO(8)\) Dynkin diagram. The principle of triality allows us to define three different forms of \(OSp(8/2,\mathbb{R})\) [in fact, of all \(OSp(8/2N,\mathbb{R})\)]. These different \(OSp(8/2,\mathbb{R})\) superalgebras are distinguished by the transformation properties of the odd generators under the even subgroup \(SO(8) \otimes Sp(2,\mathbb{R})\):

\[
OSp(8/2,\mathbb{R})_v = [(2\bar{8}, 1) + (1, 3)] + [(8_v, 2)] \quad , \quad (5)
\]

\[
OSp(8/2,\mathbb{R})_s = [(2\bar{8}, 1) + (1, 3)] + [(8_s, 2)] \quad , \quad (6)
\]

\[
OSp(8/2,\mathbb{R})_c = [(2\bar{8}, 1) + (1, 3)] + [(8_c, 2)] \quad . \quad (7)
\]

The singleton supermultiplets given by (3) and (4) are those of \(OSp(8/2,\mathbb{R})_v\). To obtain the singleton supermultiplets of \(OSp(8/2,\mathbb{R})_s\) and \(OSp(8/2,\mathbb{R})_c\) one needs only to do a triality permutation of the eight-dimensional representations \(8_v\), \(8_s\) and \(8_c\). Thus for \(OSp(8/2,\mathbb{R})_v\) we have the following \(SO(8) \otimes Sp(2,\mathbb{R})\) decomposition of the singleton supermultiplets

\[
S^1_s = (8_v, \lambda_0 = \frac{1}{4}) \oplus (8_c, \lambda_0 = \frac{3}{4}) \quad , \quad (8)
\]

\[
S^2_s = (8_c, \lambda_0 = \frac{1}{4}) \oplus (8_v, \lambda_0 = \frac{3}{4}) \quad . \quad (9)
\]

Similarly, for the singleton irreps of \(OSp(8/2,\mathbb{R})_c\) we have

\[
S^1_c = (8_s, \lambda_0 = \frac{1}{4}) \oplus (8_v, \lambda_0 = \frac{3}{4}) \quad , \quad (10)
\]

\[
S^2_c = (8_v, \lambda_0 = \frac{1}{4}) \oplus (8_s, \lambda_0 = \frac{3}{4}) \quad . \quad (11)
\]

Interpreting \(Sp(2,\mathbb{R}) \sim SO(2,1)\) as the one-dimensional conformal group we can associate with the UIR's of \(Sp(2,\mathbb{R})\) labelled by \(\lambda_0 = 1/4\) and \(\lambda_0 = 3/4\) a one-dimensional "bosonic" field \(X(\xi)\) and a "fermionic" field \(\theta(\xi)\), respectively. Thus to the singleton supermultiplets of \(OSp(8/2,\mathbb{R})\) given above we can associate a supermultiplet of fields \((X, \theta)\) with different \(SO(8)\) labels. Of particular interest to us are the supermultiplets for which the "bosonic" fields \(X(\xi)\)
transform in the vector representation of $SO(8)$. This is because we will eventually identify these fields with the transverse co-ordinates in a ten-dimensional space-time. Thus the relevant supermultiplet of fields are

$$
\left(X^i(s), \Theta^\alpha(s) \right)
$$

(12)

corresponding to the singleton irrep S^1_8 and the multiplet

$$
\left(X^i(s), \Theta^\alpha(s) \right)
$$

(13)

corresponding to the singleton irrep S^2_8. [The indices i,j are 8_v indices; x, β, \ldots are 8_s indices and A, \hat{A}, \ldots are 8_c indices of $SO(8)$.]

Let us now consider an adS_3 supergroup of the form

$$
OSp(8/2, R)_{A^+} \otimes OSp(8/2, R)_{B^-}
$$

(14)

where A, B denote the different forms (v, s, c) of the superalgebra $OSp(8/2, R)$ and $+$ and $-$ refer to the fact that the respective $Sp(2, R)$ factor acts on the light-cone co-ordinates $\xi_+ = \tau + \sigma$ and $\xi_- = \tau - \sigma$, respectively. This is an adS supergroup for which both $Sp(2, R)$ factors have been "supersymmetrized". It corresponds to an $(8_A, 8_B)$ supersymmetry in the sense of Ref. 10). For given indices A and B the superalgebra (14) has four singleton supermultiplets. The singleton supermultiplets of fields that are of interest are those obtained by tensoring the supermultiplets (12) and (13). For the adS_3 supergroup

$$
OSp(8/2, R)_{c^+} \otimes OSp(8/2, R)_{c^-}
$$

(15)

we have the supermultiplet

$$
\left(X^i(s_+), X^i(s_-) ; \Theta^\alpha(s_+), \Theta^\alpha(s_-) \right)
$$

(16)

For the supergroup

$$
OSp(8/2, R)_{c^+} \otimes OSp(8/2, R)_{c^-}
$$

(17)

we have the interesting supermultiplet
\[(X^i (\xi_+), X^i (\xi_-); \Theta^i (\xi_+), \Theta^i (\xi_-))\] \hspace{1cm} (18)

The field theories of the \(adS_3\) singleton supermultiplets (16) and (18) will be superconformally invariant two-dimensional field theories. Using a triality modified form of the notation of [11], they will have an \((\hat{8}_c, \hat{8}_c)\) and an \((\hat{8}_c, \hat{8}_s)\) conformal supersymmetry. This interpretation is confirmed by a study of \(Osp(8/2, \mathbb{R}) \oplus Osp(8/2, \mathbb{R})\) as the finite dimensional superconformal group\(^{10}\). The fields of (16) and (18) are of course only appropriate for an on-shell description of a \(d = 2\) field theory. To go off-shell we should replace them by \(d = 2\) covariant fields:

\[(X^i (\xi); \Theta^i_L (\xi), \Theta^i_R (\xi))\] \hspace{1cm} (19)

and

\[(X^i (\bar{\xi}); \Theta^i_L (\bar{\xi}), \Theta^i_R (\bar{\xi}))\] \hspace{1cm} (20)

where \(\xi = (\tau, \sigma)\) and \(L(R)\) indicates a chiral (anti-chiral) \(d = 2\) spinor. It is obvious, at this point, that the desired actions are just those of Green and Schwarz\(^{12}\) for closed superstrings of type IIA and IIB in the light-cone gauge. For the latter we have (omitting factors of \(4\pi\alpha\), etc.) the action

\[S = \frac{i}{2} \int d^2 \xi \left\{ \partial_+ X^i \partial_- X^i + \Theta^i \not\partial \Theta^i \right\} \hspace{1cm} (21)\]

This action has \((\hat{8}_c, \hat{8}_c)\) type \(d = 2\) supersymmetry\(^{12}\). To see that it has an \((\hat{8}_c, \hat{8}_c)\) type conformal supersymmetry, let us restrict \(SO(8)\) to its \(SU(3)\) subgroup under which both \(\hat{8}_v\) and \(\hat{8}_s\) decompose as \(3 \oplus \bar{3} \oplus 1 \oplus 1\). Then the action (21) can be interpreted as a conventional supersymmetric \(\sigma\)-model with a flat target space\(^{13}\). This is certainly \(d = 2\) conformal invariant. But conformal invariance together with \((\hat{8}_c, \hat{8}_c)\) supersymmetry implies \((\hat{8}_c, \hat{8}_c)\) superconformal invariance. It seems likely that this is the unique action with \((\hat{8}_c, \hat{8}_c)\) conformal supersymmetry given the very stringent conditions that are already implied on the target space of a \(d = 2\) \(\sigma\)-model by \((4,4)\) supersymmetry\(^{16}\).

The heterotic superstring can similarly be thought of as a singleton field theory, but in this case we must consider an \(adS_3\) supergroup of the form
\[\text{OSp}(8/2, \mathbb{R}) \mathbb{C}^+ \otimes \text{Sp}(2, \mathbb{R}) \mathbb{C}^- \] \hspace{1cm} (22)

There are two singleton irreps of Sp(2,\mathbb{R}), which are the analogues of the "Di" and the "Rac" representations of adS_4 group SO(3,2)\(^{1,2}\). They can be associated with the Fourier modes of a one-dimensional "bosonic" field \(\phi(\xi) \) and a "fermionic" field \(\psi(\xi) \). To obtain the fields of the heterotic string we must take 24 bosonic fields \(\phi^a(\xi) \), \(a = 1, \ldots, 24 \) and a singleton supermultiplet of OSp(8/2,\mathbb{R})\(_{c^+}\), i.e.,

\[(\chi^i(\xi^+), \phi^a(\xi^-), \Theta^\alpha(\xi^+)) \] \hspace{1cm} (23)

These are then the fields of a two-dimensional (8,0) superconformally invariant field theory, the heterotic superstring\(^{15}\).

It was observed sometime ago that the tensor product of the singleton irreps of the adS_4 group SO(3,2) decomposes into massless irreps only\(^{16}\). Using the methods of Ref. 17, one can prove similar results for all non-compact groups and supergroups\(^{18}\). For example, the tensor product of two singleton supermultiplets of adS supergroups in any dimension decompose into massless supermultiplets only. The tensor product of more than two singleton supermultiplets decompose into massive UIR's of the respective adS supergroup\(^{18}\). The superstring theories exhibit similar features in a different context. Their spectra consist of massless and massive states of ever increasing mass. For example the massless excitations of the type IIB superstring are found in the tensor product of two singleton supermultiplets, e.g.,

\[(\mathbb{F}_V \oplus \mathbb{F}_S) \otimes (\mathbb{F}_V \oplus \mathbb{F}_S) \] \hspace{1cm} (24)

with the SO(8) irreps being thought of as \(d = 10 \) "helicity". It is equally the SO(8) content of the \(N = 16 \), \(d = 3 \) supergravity\(^{19}\) with SO(8) considered as an internal symmetry group. Thus, there is a curious parallel between \(d = 10 \) and \(d = 3 \) supergravity theories.

We shall conclude this letter with a construction of the singleton irreps of OSp(8/2,\mathbb{R})\(_{c^+}\). We do this by the oscillator method\(^{17}\). We introduce the superannihilation and creation operators
\[\eta_A = \begin{pmatrix} \alpha \\ \alpha^\mu \end{pmatrix} ; \quad \eta^A = \begin{pmatrix} \alpha^+ \\ \alpha^\mu \end{pmatrix} \]

(25)

where \(a \) is bosonic and \(\alpha^\mu = \alpha^+ \) \((\mu=1,2,3,4)\) are fermionic satisfying the supercommutation relations

\[[\eta_A, \eta^B] = \delta^B_A \]

(26)

The operators \(\eta_A \) and \(\eta^A \) transform in the \((1,4)\) and \((1,4)\) representations of the maximal compact subalgebra \(U(1/4) \) of \(OSp(8/2,\mathbb{R}) \). With respect to this subsuperalgebra the generators of \(OSp(8/2,\mathbb{R}) \) have a Jordan decomposition:

\[L = L^- \oplus L^0 \oplus L^+ \]

(27)

where \(L^0 = U(1/4) = U(1) \otimes SU(1/4) \). The \(L^+ \), \(L^- \) and \(L^0 \) have the following realization as bilinears in the superoscillators \(\eta_A, \eta^B \):

\[L^- = \eta_A \eta_B \]

\[L^0 = \eta_A \eta_B + (-1)^{(\text{deg}A)(\text{deg}B)} \eta_B \eta^A \]

\[L^+ = \eta_A \eta^B \]

(28)

It is easy to verify that these bilinears generate the Lie superalgebra \(OSp(8/2,\mathbb{R}) \) in a super-Hermitian basis \((10),\) \((17)\).

Now consider any set of states \(|\Omega\rangle\), in the super Fock space of \(\eta^A \), that transform irreducibly under the maximal compact subalgebra \(U(1/4) \) and are annihilated by the operators belonging to the \(L^- \) space. Then by acting on \(|\Omega\rangle\) repeatedly by the operators belonging to the \(L^+ \) space one generates an infinite set of states that form the basis of a UIR of \(OSp(8/2,\mathbb{R}) \). The set of states \(|\Omega\rangle\) is referred to as the lowest weight vector of the respective UIR of \(OSp(8/2,\mathbb{R}) \). The infinite set of states that form the basis of a UIR of \(OSp(8/2,\mathbb{R}) \) can be decomposed into lowest weight UIR's of \(Sp(2,\mathbb{R}) \) transforming in certain irreps of \(SO(8) \). The action of the bilinear operator \(a^+ a^\dagger \) belonging to \(L^+ \) moves one within a UIR of \(Sp(2,\mathbb{R}) \) while the bilinear operator \(a^\mu a^\nu \in L^+ \) moves one within an irrep of \(SO(8) \). The odd generator \(a^+ a^\mu \in L^+ \) is a supersymmetry generator and moves one from a UIR of \(Sp(2,\mathbb{R}) \) with a given \(SO(8) \) irrep to another UIR of \(Sp(2,\mathbb{R}) \) with different \(SO(8) \) transformation properties.
Since we have realized the generators of $\text{OSp}(8/2,\mathbb{R})_\nu$ as bilinears of a single superoscillator η^A there exist only two lowest weight vectors $|\Omega\rangle$ transforming irreducibly under $\text{U}(1/4)$ and are annihilated by L^-. These lowest weight vectors are the vacuum state $|0\rangle$ and the one-particle state $\eta^A|0\rangle$ which consists of one bosonic and four fermionic degrees of freedom:

$$\eta^A|0\rangle = a^+|0\rangle \oplus \alpha^+|0\rangle .$$

(29)

The singleton supermultiplet determined by the vacuum state $|0\rangle$ as the lowest weight vector is simply the multiplet S^1 in Eq. (3) while the supermultiplet corresponding to the lowest weight vector $\eta^A|0\rangle$ is the supermultiplet S^2 given in Eq. (4).

Acknowledgements.

P.K. Townsend wishes to thank C. Hull for enlightening discussions about superstrings, and B.E.W. Nilsson is grateful to M.J. Duff for stimulating discussions. Three of us (M.G., B.E.W.N. and G.S.) would like to thank the organizers of the 1985 Cambridge Workshop on Supersymmetry and its Applications for providing the stimulating atmosphere where part of this work was done.
REFERENCES

5) M. Güngaydin and N.P. Warner - Caltech Preprint 68-1202 (1985), to appear in
 Nucl.Phys.B.

6) M. Güngaydin - Ecole Normale Supérieur Preprint 83/5 (Jan 1983),
 unpublished.

7) E. Sezgin - Trieste Preprint IC/83/220 (1983);
 H. Nicolai and E. Sezgin - in Ref. 3);

 377;
 P. van Nieuwenhuizen - Class.Quant.Grav. 2 (1985) 1;
 63.

9) M. Güngaydin and N. Marcus - Class.Quant.Grav. 2 (1985) L11;

10) M. Güngaydin, G. Sierra and P.K. Townsend - Preprint UCRL-93923 (Jan 1986),
 to appear in Nucl.Phys.B.

13) P. Candelas, G. Horowitz, A. Strominger and E. Witten - Nucl.Phys. B258
 (1985) 46.

 253.

 (1980) 236.

18) M. Güngaydin - unpublished.