THE OCTONIONIC INSTANTON

S. Fubini and H. Nicolai
CERN - Geneva

ABSTRACT

The existence of self-dual instanton solutions of $d = 4$ Yang-Mills theories is related to the fact that the action can be expressed as the square of the self-dual field $\hat{E} + \hat{B}$. In this letter, we prove a similar result for $d = 8$ Yang-Mills theories. By use of the octonionic algebra the action can be represented as the sum of the squares of seven combinations of the field strengths. As a consequence, we construct a classical solution which is the eight dimensional analogue of the $d = 4$ instanton.
Supersymmetric theories can be characterized by the existence of a transformation of the bosonic variables which renders the bosonic part of the action Gaussian and whose Jacobian equals the Matthews-Salam determinant obtained by integrating out the fermionic variables1). Of particular interest are those theories for which the new bosonic variables \(\xi_\alpha \) are local functions of the original variables \(\phi_\alpha \), and their space-time derivatives \(\partial_\mu \phi_\alpha \), i.e.

\[
S_B(\phi) = \int \xi_\alpha \xi_\alpha \, dx + \text{topol. term}
\]

\[
\xi_\alpha = \xi_\alpha(\phi, \partial_\mu \phi)
\]

since they admit a reinterpretation in terms of stochastic differential equations2). There is only a limited number of theories for which an explicit "quadrature" of the bosonic action is possible. The cases known so far are supersymmetric quantum mechanics, for which the variable transformation (1) is given by \(\xi = \xi V(q) \) (where \(V(q) \) is the derivative of the "superpotential")3),4), the \(N = 2 \) Wess-Zumino model in two dimensions2),4) and the \(N = 1 \) super Yang-Mills theory in four dimensions. For the latter, the Gaussian variables are just5)

\[
\xi_i = E_i \pm B_i \quad i = 1,2,3
\]

where the electric and magnetic fields are, of course, defined as

\[
E_i \equiv F_{i4} \quad B_i \equiv \frac{1}{2} \epsilon_{ijk} F_{jk}
\]

These three cases are easily seen to be related to the real numbers \(\mathbb{R} \) (supersymmetric quantum mechanics), the complex numbers \(\mathbb{C} \) (\(d = 2, \, N = 2 \) Wess-Zumino model) and the quaternions \(\mathbb{H} \) (\(N = 1 \) super Yang-Mills), as \(\epsilon_{ijk} \) in (3) are nothing but the quaternionic structure constants. In this paper, we present a discussion of the fourth remaining case corresponding to the last division algebra, the octonions \(\Phi \). The central observation is that the quadrature of the Yang-Mills action in eight dimensions can be achieved by replacing (3) by

\[
E_i \equiv F_{i8} \quad B_i \equiv \frac{1}{2} c_{ijk} F_{jk}
\]

where \(c_{ijk} \) are the octonionic structure constants6) and the indices \(i,j,k,\ldots \) run from one to seven from now on. However, we will not explore the possible
implications of this observation for supersymmetry here, but rather concentrate on another (classical) aspect which may also have important consequences. Namely, for the cases treated so far, it is known that the equation

$$\xi_\alpha(\phi) = 0$$

(5)

leads to solutions of the corresponding equations of motion with non-trivial topological properties and a vanishing energy momentum tensor\(^7\) [for a discussion of supersymmetric quantum mechanics, see Ref. 4)]. We will demonstrate in this paper that this is also true in eight dimensions by deriving a new "instanton" solution for eight dimensional Yang-Mills theories\(^*\). Although this solution has many features reminiscent of the well-known d = 4 instanton solutions\(^7\), there are some important differences which make a separate study worthwhile. We also emphasize that the possibility of "taking the square root" of the Yang-Mills action in eight dimensions is an isolated phenomenon and unlikely to recur in yet higher dimensions.

The instanton solution of Ref. 7) was based on the gauge group SU(2). The relevant group in our case turns out to be one of the non-canonically embedded \(SO(7)\) subgroups of \(SO(8)\) which we denote by \(SO(7)^\pm\), and we therefore begin with a brief discussion of its properties. Our presentation closely adheres to Section 3 of Ref. 9) to which we refer the reader for further details. For the sake of simplicity, we will restrict our attention to the \(SO(7)^+\) subgroup throughout most of this paper. The basic quantity is the following \(SO(7)^\pm\) invariant tensor \(\mathcal{C}^{\mu\nu\rho\sigma\tau}\) in eight dimensions, which is constructed out of the octonionic structure constants by defining\(^9)-11\)

$$\mathcal{C}^{\mu\nu\rho\sigma\tau} = \mathcal{C}^{\mu\nu\rho}$$

$$\mathcal{C}^{\mu\nu\rho\sigma\tau} = \frac{1}{6} \eta \mathcal{C}^{\mu\nu\rho\sigma\tau} \mathcal{C}_{\rho\sigma\tau}$$

(6)

This tensor is self-dual with respect to the eight index Levi-Civita symbol with the duality phase \(\eta = \pm 1\), and obeys the relation [Ref. 9), see also Ref. 10)]

\(^*\) The "self-duality" condition based on (4) rather than (3) was already considered in Ref. 8) where the special role of eight dimensions was emphasized.
\[C^{MNP} C_{QRST} = 6 \delta^{MNP}_{QRS} - 9 \gamma \delta^{[M}_{[Q} C^{NP]}_{RS]} \]

(7)

where capital indices run from one to eight. From (6), one obtains the projection operators\(^9\)

\[P_1^{MN}_{PQ} \equiv \frac{3}{4} \left(\delta^{MN}_{PQ} + \frac{1}{6} \eta C^{MNPQ} \right) \]

(8)

\[P_2^{MN}_{PQ} \equiv \frac{1}{4} \left(\delta^{MN}_{PQ} - \frac{1}{2} \eta C^{MNPQ} \right) \]

(9)

onto the orthogonal 21- and 7-dimensional subspaces of the 28-dimensional vector space whose elements are labelled by antisymmetric index pairs [MN],... . If \(\Gamma_{MN} \) are the generators of SO(8), the generators

\[G_{MN} = P_1^{MN}_{PQ} \Gamma_{PQ} \]

(10)

span the Lie algebra of SO(7)\(^+\) and SO(7)\(^-\) for the choices \(\eta = +1 \) and \(\eta = -1 \), respectively. We will henceforth put \(\eta = 1 \). The commutation relations of the SO(7)\(^+\) Lie algebra are then given by

\[\left[G^{MN}, G_{PQ} \right] = 6 G^{[M}_{[Q} \delta^{P]}_{N]} + \]

\[+ \frac{1}{2} \left(C_{PQR}^{[M} G^{NJR]} - C^{MNR}_{P} G_{Q}^{JR} \right) \]

(11)

Note the appearance of the second term on the right-hand side which has no analogue in the ordinary SO(7) Lie algebra.

The Yang-Mills Lagrangian is

\[\mathcal{L} = - \frac{1}{4} \text{Tr} \, F_{MN} F^{MN} \]

(12)

where the trace over Yang-Mills indices is appropriately normalized. Using the formulae above it is not difficult to see that
\[\mathcal{L} = - \frac{1}{2} \text{Tr} \; \xi_m \xi_m - \frac{1}{2} C_{MNPQ} \text{Tr} \; F^{MN} F^{PQ} \] (13)

where, in accordance with our previous discussion, we have defined

\[\xi_m \equiv F_{m8} - \frac{1}{2} C_{mnp} \; F_{np} \] (14)

[if SO(7)+ is replaced by SO(7)−, the second terms in (13) and (14) appear with a plus sign]. The second term in (13) is a total derivative as

\[\text{Tr} \; F_{[MNPQ]} = \partial_{[M} \phi_{NPQ]} \] (15)

with

\[\phi_{NPQ} \equiv 4 \text{Tr} \left\{ A_{[N} \partial_P A_{Q]} + \frac{2}{3} A_{[N} A_P A_{Q]} \right\} \] (16)

To construct the new instanton solution we start from the ansatz

\[A_M(x) = G_{MP} f_P(x) \] (17)

where \(f_P(x) \equiv \delta_P f(x) \) \(\ast \); we shall also employ the notation \(f_{PQ} \equiv \delta_P \delta_Q f \). It is crucial that the matrix in (17) is \(G_{MP} \) and not \(\Gamma_{MP} \). The definition (10) ensures that \(G_{MN} \) has only 21 independent components \(\ast \) instead of the 28 components of \(\Gamma_{MN} \). From (11) and (17), one readily computes the field strength.

\[\ast \text{This assumption may actually be too restrictive unlike in the case of ordinary instantons. If one imposes the Landau gauge, it follows that } G_{MN} \delta_{M} f_{N} = 0 \text{ which implies only } \delta_{[M} f_{N]} + 1/6 G_{MNPQ} \delta_{P} f_{Q} = 0 \text{ but not } \delta_{[M} f_{N]} = 0. \]
\[F_{MN} = \partial_M A_N - \partial_N A_M + [A_M, A_N] = \]
\[= (2 \phi_P \phi_M - 3 \phi_P \phi_M - \frac{3}{2} \frac{f_P^2}{f_Q} \delta_P \delta_M) G_{NJP} - \]
\[- \frac{1}{2} \phi_P \phi_Q \, C_{MNPR} \, G_{QR} \]

which, by means of the projection operators (8) and (9), can be rewritten in the form

\[F_{MN} = P_1 \, \phi_{PQ}^{(1)} G_{QR} + \]
\[+ P_2 \, \phi_{PQ}^{(2)} G_{QR} \]

(19)

with

\[\phi_{PQ}^{(1)} = 2 (\phi_P \phi_Q - \phi_P \phi_Q) - \frac{3}{2} \phi_R^2 \delta_{PQ} \]

(20)

\[\phi_{PQ}^{(2)} = 2 (\phi_P \phi_Q - 3 \phi_P \phi_Q) - \frac{3}{2} \phi_R^2 \delta_{PQ} \]

(21)

It is crucial for the following that any term proportional to \(\delta_{PQ} \) can be added to (21) because it drops out in (19) since

\[G_{MN} - \frac{1}{2} C_{MN} \phi_{PQ} G_{PQ} = \]
\[= P_2 \, \phi_{PQ} G_{PQ} = 0 \]

(22)

by the orthogonality of the projectors (8) and (9). Demanding the field strength to be self-dual10 is equivalent to requiring \(\phi_m = 0 \) in (14). Thus,

\[F_{MN} = \frac{1}{2} C_{MN} \phi_{PQ} F_{PQ} \]

(23)

now amounts to putting \(\phi_{PQ}^{(2)} = 0 \) up to terms proportional to \(\delta_{PQ} \). Hence,
$$\Phi_{PQ} - 3 \Phi_P \Phi_Q = \hbar \delta_{PQ}$$
(24)

where \hbar is an arbitrary and as yet undetermined function. To solve this differential equation, we substitute

$$\Phi(x) = -\frac{1}{3} \log \phi(x)$$
(25)

into (24) and take the trace with respect to δ_{PQ} to determine \hbar. In this way, we arrive at the equation

$$\partial_M \partial_N \phi = \frac{1}{8} \delta_{MN} \partial_P \phi$$
(26)

which, for a specific choice of co-ordinates, is solved by $\phi(x) = 1 + x^2$. Thus, the gauge potential

$$A_M(x) = -\frac{2}{3} \frac{1}{1 + x^2} G_{MN} x^N$$
(27)

gives rise to a field strength F_{MN} which is "self-dual" in the sense of (23). More explicitly, F_{MN} is given by

$$F_{MN} = \frac{2}{3} \frac{2 + x^2}{(1 + x^2)^2} G_{MN} + \frac{4}{3} \frac{1}{(1 + x^2)^2} x_{[M} G_{NP]} x_P$$

$$- \frac{2}{9} \frac{1}{(1 + x^2)^2} x_P x_Q C_{MNPR} G_{QR}$$
(28)

It is easy to verify that the solution (27) also satisfies the Yang-Mills field equations by virtue of the Bianchi identities and the self-duality constraint (23). This also follows directly from formula (13) as the variation of (13) with respect to A_M is linear in F_m. If, on the other hand, one were to impose the requirement

$$F_{MN} = 0$$
(29)

which is equivalent to putting $\phi_P^{(1)} = 0$, a calculation similar to the one just performed shows that (29) admits only the trivial solution $F_{MN} = 0$. This is
because no term proportional to δ_{PQ} can be added to $\phi_{PQ}^{(1)}$ in (20). The reason is, of course, that condition (23) requires only seven combinations to vanish whereas (29) would require 2i combinations to vanish. Thus, unlike in the case of ordinary instantons, there is an asymmetry between "self-dual" and "antiself-dual" solutions; for the latter, the SO(7)$^-$ invariant tensor must be used with $\eta = -1$ in (6). "Multi-instantons" will be more difficult to find.

Just as for ordinary instantons, one may enquire as to the topological meaning of our new solution. While this problem deserves further study, we here only remark that one may either consider the quantity $\text{Tr} F_{[MN}F_{PQ]}F_{RS}F_{TU]}$, which is a total derivative or instead the four-form

$$q \equiv \text{Tr} F \wedge F =$$

$$= \text{Tr} F_{MN}F_{PQ} dx^M dx^N dx^P dx^Q = d\phi$$

where, for the field strength (28), the three form ϕ is given by

$$\phi_{MNP} = -\frac{2}{27} \frac{3 + x^2}{(1 + x^2)^3} C_{MNPQ} x^Q$$

Since q is a four-form, it must be integrated over a four-dimensional hypersurface. As an example, we consider the hyperplane where the co-ordinates $(y_1,y_2,y_3,y_4) = (x_M,x_N,x_P,x_Q)$ are varied while the remaining four co-ordinates $z = (z_1,z_2,z_3,z_4)$ are kept fixed. One finds

$$Q = \frac{2}{27} C_{MNPQ} \int_{\mathbb{R}^4} \frac{3 + z^2(4 + y^2 + z^2)}{(1 + y^2 + z^2)^4} dy =$$

$$= \frac{\pi^2}{27} C_{MNPQ}$$
which is independent of z. Alternatively, one could have used Gauss' theorem to reduce (32) to a surface integral at infinity. The result is, of course, the same and does not depend on the shape of the hypersurface away from infinity. We also note that (32) is invariant under rotations in the $SO(7)^+$ subgroup of $SO(8)$ because of the invariance properties of the tensor C_{MNPQ}.

Let us finally mention another important difference with $d = 4$ instanton. It is well known that the usual Yang-Mills action is conformally invariant only in four dimensions. As shown in Ref. 12), the existence of the standard $d = 4$ instanton can be deduced directly from the conformal invariance of the theory. It is therefore clear that the formalism of Ref. 12) works only in four dimensions. The existence of an instanton in eight dimensions follows from the explicit quadrature of the action in (13). One may, of course, adopt a different attitude and consider the conformally invariant action in eight dimensions which is of fourth order in the field strength. In this case, the formalism of Ref. 12) may be applied. Solutions based on such an action have been found recently13).
REFERENCES

