K_{	ext{L}} \rightarrow \mu^+\mu^-, TOP MASS AND BOTTOM LIFETIME

L. Bergström and E. Massó *)
CERN - Geneva

P. Singer +)
CERN - Saclay

and

D. Wyler
CERN - Geneva

ABSTRACT

We study a class of diagrams, that has previously been overlooked, contributing to the (dispersive) electromagnetic part of the $K_{	ext{L}} \rightarrow \mu^+\mu^-$ amplitude. The strength of this extra contribution can be estimated in different models and could be measured in related processes. By combining these results with those coming from the $K^0\rightarrow\pi^0$ transition (evaluated in the Kobayashi-Maskawa scheme) we obtain rather strong constraints on the t quark mass and the B meson lifetime. The recently measured value for the B meson lifetime is difficult to accommodate unless the t quark is very heavy.

*) On leave of absence from Departament de Física Teòrica, Universitat Autònoma de Barcelona, Bellaterra, Spain.

+) On leave from Technion - Israel Institute of Technology, Haifa, Israel.

Ref.TH.3659-CERN

July 1983
The observed suppression of the $K_L \rightarrow \mu^+ \mu^-$ decay and the K^0-\bar{K}^0 transition indicates not only the absence of a direct neutral $|\Delta S|=1$ weak current, but also that a cancellation mechanism $^{1},^{2}$ is at work when higher order interactions effectively induce such currents. Therefore, both processes constrain the parameters of the underlying theory of the weak interactions. In order to calculate the above processes one must, after evaluating the free quark diagrams $^{2}(-4)$, also take into account the strong confining forces which bind the quarks inside the mesons. The K_L vacuum matrix element, relevant for the purely weak part of the $K_L \rightarrow \mu^+ \mu^-$ amplitude, can be reliably estimated and expressed in terms of the kaon decay constant f_K. The hadronic matrix element of the K^0-\bar{K}^0 amplitude, on the other hand, has been a subject of great concern and uncertainty in the literature $^{2},^{4}(-7)$. From this it would follow that the $K_L \rightarrow \mu^+ \mu^-$ process would be more suitable for quantitative considerations. However, also in this case, there is a potentially dangerous ambiguity: the magnitude of the dispersive electromagnetic contribution to the decay amplitude. Previously, this was assumed to be small, either ad hoc 8 or by comparison to $\eta \rightarrow \mu^+ \mu^-$, where a recent measurement 10 indicates a small value for the real part of the amplitude 8). But, as recently pointed out 15, the weak Hamiltonian induces a class of diagrams which are absent in $\eta \rightarrow \mu^+ \mu^-$. In the present paper, we study the influence of these on the weak parameters.

To start with, we define a reduced $K_L \rightarrow \mu^+ \mu^-$ amplitude, A, such that **

$$\Gamma(K_L \rightarrow \mu^+ \mu^-)/\Gamma(K_L \rightarrow \gamma \gamma) = \frac{a_p}{\pi \beta^2} \left(\frac{m}{m_K}\right)^2 |A|^2 ,$$

(1)

where $\beta^2 = 1 - 4(m/\mu)^2$. The imaginary (absorptive) part of the amplitude comes mainly from the $\gamma \gamma$ intermediate state (Fig. 1). It is model-independent and given by 16

$$\text{Im } A = -\frac{e^2}{8 \beta} \ln \left(\frac{1+\beta}{1-\beta}\right) \approx -3.8 \cdot 10^{-2} ,$$

(2)

where e is the unit charge. We write the real part as

$$\text{Re } A \equiv A_{c.m.} + A_w .$$

(3)

* An old measurement 11 of the $\eta \rightarrow \mu^+ \mu^-$ decay implied a substantial contribution of the real part of the amplitude. This is inconsistent with several conventional models $^{12}(-14)$ which agree with the most recent measurements 10.

** The CP violating component in K_L can be safely neglected.
Here, $A_{e.m.}$, is the real part of the two-photon amplitude (Fig. 1) and A_0 stands for additional contributions to the dispersive part of A. Experiment17 fixes $|A|$, as given in Eq. (1):

$$|A|_{\text{exp}} = (4.7 \pm 0.5) \cdot 10^{-2}. \quad (4)$$

Since we know the imaginary part of the amplitude, Eq. (2), we can also fix the dispersive part:

$$|\Re A|_{\text{exp}} = |A_{e.m.} + A_0|_{\text{exp}} = (2.8 \pm 0.8) \cdot 10^{-2}. \quad (5)$$

Several authors have used the $K_L \to \mu^+\mu^-$ process, together with other information, to bound some definite combination of the KM angles and phases and/or the top quark mass. In order to use (5) one must assume a value for $A_{e.m.}$. In Refs. 9-10), the approximations discussed before were made. But as we will see now, these are not all justified.

In evaluating $A_{e.m.}$ one assesses first the transition $K_L \to \gamma^*\gamma^*$; the problem here seems to be the presence of important long-distance contributions\textsuperscript{18)-20). We therefore adhere to the calculational scheme proposed in Ref. 15), where pole dominance is assumed and where experimental knowledge of several couplings reduces the problem to a calculation of non-leptonic weak meson-meson transitions15). The resulting effective diagrams are given in Figs. 2a and 2b. It is evident that diagram 2b has no counterpart in the decay $\eta \to \mu^+\mu^-$ and thus destroys the analogy between the two processes.

The contribution of the diagram 2a (virtual photons) to $A_{e.m.}$ involves the transition $P \to \gamma^*\gamma^*$, where P is a non-strange pseudoscalar meson which is off-mass-shell. This has been recently evaluated in a quark triangle model14). The results coincide with the ones obtained using vector dominance (VDM)\textsuperscript{13). As a consequence, we can estimate reliably the contribution from the graph of Fig. 2a to the $P \to \pi^+\pi^-$ decays. For consistency, we work in the long-distance (VDM) approach. The saturation of one virtual photon by a vector meson (corresponding to a $PV\gamma$ vertex) gives

$$A_1^{(a)} = -2.3 \cdot 10^{-2}, \quad (6a)$$

while if one saturates both virtual photons (PVV vertex) one finds

$$A_2^{(a)} = -1.3 \cdot 10^{-2}. \quad (6b)$$
All realistic models for $F^{+Z}_{XZ} \rightarrow X^{+Z}_{XZ}$ give numbers between (6a) and (6b) $^{12)}-^{14)}$. The form factor corresponding to the diagram 2b is given by $^{15)}, {21)}$

$$F(s) = \alpha \sqrt{2} e G_F \frac{f_{K^*K^0}}{f_{K^*K^+}} \left(1 - \frac{1}{1 - s/m^2_{K^*}} \right) \times$$

$$\left\{ \frac{4}{3} - \frac{1}{1 - s/m^2_{g}} - \frac{1}{3} \left(\frac{1}{1 - s/m^2_{\omega}} + \frac{2}{1 - s/m^2_{\eta'}} \right) \right\} ,$$

(7)

where s is the squared mass of the photon, coupled to the vector meson. Note $F(0) = 0$, as required by gauge invariance $^{2)}, {15)}, {19)}, {21)}$. The parameter α depends on the model used to calculate the transition $K^* \rightarrow V$. For instance, in Ref. $^{15})$, the weak vector-vector $\Delta S = 1$ transition was evaluated in the KM model, including gluonic corrections. Penguin diagrams are essentially inoperative to enhance it. The result is $^{15)} |\alpha| \approx 1.2 \sin \theta_c \cos \theta_c = 0.2-0.3$, to be inserted in Eq. (7). Details may be found in Ref. $^{15})$. On the other hand, $|\alpha| = 1$, if one uses the assumptions of Sakurai $^{21)}, {22})$. In both cases we see that the previous assertions on $A_{e.m.}$ which correspond to $\alpha = 0$ are not tenable. We will therefore take $|\alpha|$ to be a free parameter in the following, $|\alpha| < 1$, hoping for its quick experimental determination.

Introducing now the experimental $K^* \rightarrow K \gamma$ rate $^{23})$ in Eq. (7), one finds that the contribution of the graph 2b to $A_{e.m.}$ is

$$A_1^{(b)} = -5.3 \cdot 10^{-2} \times \alpha .$$

(8a)

Here, we used $f_{K^*} = f_{\rho} = 5.09$. We have also evaluated the diagram 2b with a vector meson coupled also to the photon emerging from the $K^*K\gamma^*$ vertex. With minor changes in (7) we find

$$A_2^{(b)} = -4.9 \cdot 10^{-2} \times \alpha .$$

(8b)

Notice that the results expressed in Eqs. (6a) and (8a) correspond to diagrams with only one vector meson dominated photon, while Eqs. (6b) and (8b) reflect the saturation of both photons.

*) To our knowledge, the only similar calculation is done in Ref. $^{21})$. We were not able to reproduce that result. The discrepancy may be due to the fact that in Ref. $^{21})$ the results of Ref. $^{13})$ are heavily used. However, in Ref. $^{13})$, there is an error in the $PV\gamma$ calculation (I. Ametller, A. Bramon, L. Bergström and E. Massó, unpublished).
With this,

\[A_{\text{e.m.}} = A^{(A)} + A^{(b)} \] \hspace{1cm} (9)

and thus depends on \(\alpha \). The allowed values for \(A_{\text{e.m.}}/A \) are shown in Fig. 3a. The boundaries of the band correspond to Eqs. (6a) and (8a), and to Eqs. (6b) and (8b). The maximum value of \(A_{\text{e.m.}} \), corresponding to constructive interference Eq. (9), is about twice the absorptive part.

As anticipated, the usual assumptions about \(A_{\text{e.m.}} \) are not justified in general. As seen from Fig. 3b, obtained by combining Eqs. (4), (5) and (9), the ratio \(A_{\text{e.m.}}/A \) can be as high as \(\approx 3 \) **). Consequently, the results found by using the available \(K_L \rightarrow \mu^+\mu^- \) information might differ appreciably from published results.

Knowledge of \(\alpha \), associated with the strength of the weak transitions between vector mesons would obviously improve the situation. As has been noticed in Ref. 15), the \(K_L \rightarrow \mu^+\mu^- \gamma \) Dalitz decay is very sensitive to \(\alpha \). A good measurement of this decay would therefore determine \(\alpha \) and thus improve the usefulness of \(K_L \rightarrow \mu^+\mu^- \) to bound mixing angles and quark masses, to which issue we now turn.

In the three-generation standard model \(A_{\text{e.m.}} \) depends on the unknown EM angles \(\theta_2, \theta_3 \), on the phase \(\delta \), and on the top quark mass \(m_t \). Fixing \(\alpha \) we get an equation for these parameters. On the other hand, they also enter the calculations 4),24) of the \(K_L-K_S \) mass difference and the \(\epsilon \) parameter of CP violation **), and therefore provide independent further equations for the unknown parameters. As mentioned before, the \(K_L-K_S \) mass difference and \(\epsilon \) unfortunately depend strongly on an unknown hadronic matrix element, \(B \). In the recent literature 9),26)-28), a quite small value \(B \approx 0.3-0.4 \) has been used; this value being favoured by a PCAC 6) and chiral perturbation analysis 28). However, whether the relative consensus about this small value stems from the belief that it is correct or from the fact that it tends to give stronger (and hence more interesting) bounds on the parameters is difficult to judge. Nevertheless, we will also take this optimistic stand and mainly present results for \(B \approx 0.3-0.4 \) and only occasionally mention how the picture is changed if, for example, the vacuum insertion value 2) \(B = 1 \) is used. With this proviso, the three equations then restrict the allowed

*) Errors in (4) are taken into account.

**) We do not consider here \(\epsilon' \), since its evaluation 25) is made difficult because of Penguin graphs.
values of θ_2, θ_3, δ and m_{t} quite considerably. A new ingredient in our analysis is that we use them also to predict the bottom lifetime.

We define $\lambda_1 = U_{13}^2 U_{13}^* U_{13}'$, where U_{ij} are Kobayashi-Maskawa matrix elements, and hence

$$\begin{align*}
\text{Re } \lambda_c &= - s_1 c_2 (c_1 c_2 c_3 - s_2 s_3 c_4) \\
\text{Im } \lambda_c &= - \text{Im } \lambda_t = s_1 s_2 s_3 c_2 s_4 \\
\text{Re } \lambda_t &= - s_1 s_2 (c_1 s_2 c_3 + c_2 s_3 c_4),
\end{align*}$$

(10)

where $s_1 = \sin \theta_1$, etc.

Also needed are the usual functions 4) related to the $K^0 - \bar{K}^0$ box diagram

$$\begin{align*}
\mathcal{B}(x) &= x \left(\frac{9}{4} + \frac{9}{4} \frac{x}{(1-x)^2} - \frac{9}{4} \frac{x}{(1-x)^2} \right) + \frac{3}{2} \left(\frac{x}{x-1} \right)^3 \ln x \\
\mathcal{B}(x,y) &= \frac{x y}{y-x} \left\{ \left(\frac{1}{4} + \frac{3}{2} \frac{x}{(1-x)^2} - \frac{3}{4} \frac{1}{(1-x)^2} \right) \ln y - (x \leftrightarrow y) \\
&\quad - \frac{3}{4} \frac{1}{(1-x)(1-y)} \right\},
\end{align*}$$

(11, 12)

and to the weak $K_L - \mu^+\mu^-$ diagrams

$$G(x) = \frac{3}{4} \left(\frac{x}{x-1} \right)^2 \ln x + \frac{x}{4} + \frac{3}{4} \frac{x}{1-x}.$$

(13)

We then have, for $\Delta m = m_{K_L} - m_{\bar{K}_L}$, ϵ and $K - \mu^+\mu^-$, respectively

$$\Delta m = B \frac{G^2}{c^2} m_w \int_k^2 F(x_c, x_c, \theta_c, \delta) = 0.71 \times 10^{-14},$$

(14)

$$\epsilon = B \frac{G^2}{c^2} m_w \int_k^2 \left(\frac{m_c}{\Delta m} \right) D(x_c, x_c, \theta_c, \delta) \left(\frac{\Delta m}{m_c} \right)^2 = 2.27 \times 10^{-3} e^{-i \frac{\pi}{4}},$$

(15)

$$|\text{Re } \lambda_t | G(x_c) \cdot \eta = 5.1 \times 10^{-2} \cos \theta_3 \left| A_w \right|,$$

(16)

where $x_c = m_{t_c}^2/m_{\text{t}}^2$,

$$F = \left((\text{Re } \lambda_c)^2 - (\text{Im } \lambda_c)^2 \right) B(x_c) \eta_1 + ((\text{Re } \lambda_t)^2 - (\text{Im } \lambda_t)^2) B(x_c) \eta_2 \right.$$

$$+ 2 (\text{Re } \lambda_c \text{Re } \lambda_t - \text{Im } \lambda_c \text{Im } \lambda_t) \mathcal{B}(x_c, x_c) \eta_3,$$

(17)
\[D = (\Re \lambda_c \Im \lambda_c) B(x_c) \eta_1 + (\Re \lambda_4 \Im \lambda_4) B(x_4) \eta_2 \\
+ (\Re \lambda_c \Im \lambda_4 + \Re \lambda_4 \Im \lambda_c) \overline{B}(x_c, x_4) \eta_3. \]

Finally, the bottom lifetime is \(^{27-29}\)

\[\tau_b = 0.41 \cdot 10^{-16} \left[|U_{bc}|^2 + 0.1 \sin^2 \theta_3 \right]^{-1} \text{ sec}. \]

Above, the \(\eta_1, \eta_2, \eta_3, \eta \) are QCD correction factors calculated by the renormalization group technique \(^{3,24}\). We have used the values \(\eta_1 = 0.7, \eta_2 = 0.6, \eta_3 = 0.4, \eta = 1 \), corresponding to a value of \(\Delta_{QCD} = 100 \text{ MeV} \). For our evaluations we further took \(m_c = 1.4 \text{ GeV}, m_b = 4.6 \text{ GeV} \) and \(\sin \theta_3 = 0.23 \).

The procedure is now as follows. First, \(\theta_2, \theta_3 \) are bound by \(0.02 < \theta_2 < 0.3, 0 < \theta_3 < 0.18 \) according to a recent analysis \(^{30}\). For given values of \(\theta_2, \theta_3 \) in this range and all \(\delta \), \(^{14}\) is solved for \(m_t \). If a solution exists, the set \(\theta_2, \theta_3, \delta \) and \(m_t \) is inserted into \(^{16}\) and is accepted as a solution if \(^{16}\) is satisfied for an \(R_W \) lying within the bands of Fig. 3b. Finally, consistency with \(^{15}\) is checked. For those \(\theta_1, \theta_2, \delta, m_t \) which survive these constraints, \(\tau_B \) is calculated \[^{[Eq. (19)]}\]. In this way we obtain, by scanning the whole allowed range of the angles, a lower and an upper bound on \(m_t \). The result is shown in Figs. 4a and 4b as a function of \(R = \Gamma(K^+ \rightarrow \pi^+ \ell^- \nu) / \Gamma(K^+ \rightarrow \pi^+ \ell^- \nu) \) and, equivalently \(^{15}\), of \(\alpha \), for \(B = 0.42 \) (bag model \(^{5}\)) and \(B = 0.33 \) (PCAC \(^{6}\)). Note that the same value of \(m_t \) can be an upper or a lower bound, depending on \(\alpha \). For instance \(m_t = 40 \) is an upper bound for \(\alpha = 0 \) (8), but for a reasonable value of \(\alpha = 0.45 \) it is a lower bound. This underscores the importance of \(\alpha \). Finally, we have considered the relation between \(\tau_B \) and \(m_t \), for all the allowed angles using \(B = 0.42 \) and \(B = 0.33 \). The result is shown in Fig. 5; as is seen, a quite small region in the \(m_t-\tau_B \) plane is allowed \(^{*)}\).

An interesting result is that the lifetime of the \(B \) meson is rather short, between \((0.2-1.5) \times 10^{-13} \) sec. This reflects the fact that, in order to satisfy \(^{16}\), \(\sin \theta_2 \) cannot be too small; a lower bound is \(\theta_2 > 0.08 \), for the presumably too high values \(\alpha > 0.6, B = 1 \). For the favoured values \(B = 0.42, 0.33 \) the bound is much stronger; we find \(\theta_2 > 0.2 \) for any \(\alpha \). In order to get a small enough \(\epsilon, \delta \) must then be very close to zero, or \(\pi \); only if \(s < 0, \delta \) can be larger.

\(^{*)}\) \(m_t \) and \(\tau_B \) are not strongly correlated only for large values of \(B \), e.g., \(B = 1 \).
Finally, we have to discuss the uncertainties in our analysis. One, which fortunately can be eliminated through experimental measurements, concerns the value of α. In a quark model analysis, which is really our framework here, a value of $|\alpha| = 0.25$ is obtained 15. As can be seen in Figs. 4a and 4b, the bound $20 \leq m_t \leq 50$ GeV then follows. (By simply and erroneously neglecting the contribution, i.e., by putting $\alpha = 0$ like in all previous analyses, one would get the more narrow bound $20 \leq m_t \leq 36$ GeV.) However, there are as yet no data on non-leptonic weak transitions that exclude, e.g., the Sakurai model 22 which corresponds to $|\alpha| = 1$. Given this uncertainty of α, at present only the rather weak bound $20 \leq m_t \leq 80$ GeV can really be given. We can only stress once again the importance of an experimental measurement of $\Gamma(B^+ \rightarrow \mu^+ \mu^- \gamma)$, which seems to be the cleanest process to determine α.

The theoretical uncertainties are more troublesome. The main problem is the B factor which unfortunately also influences the results very strongly. A new determination, e.g., using lattice methods, would be very welcome. On the other hand, we see from Fig. 5 that a B meson lifetime greater than, say, 2×10^{-13} sec and/or a t quark mass greater than 80 GeV would not be consistent with the small value $B \sim 0.3-0.4$ used in this work. In fact, a B lifetime as long as $\sim 10^{-12}$ sec, which has been indicated by two very recent SLAC experiments 31, is on the edge of making the whole scheme inconsistent. We find that such values of τ_B are only possible for a B factor in the high (and narrow) range $1.4 \leq B \leq 2$; furthermore, a quite heavy t quark is required, $m_t \geq 100$ GeV. This is in itself an interesting result, but owing to the large experimental errors 31 and bearing in mind the complicated history of the charmed meson lifetimes, one should perhaps wait for more accurate data before drawing any firm conclusions.

ACKNOWLEDGEMENTS

We thank A. Bramon, A. De Rújula, W. Grimus, C. Jarlskog and H. Leutwyler for discussions. One of us (E.M.) is grateful to the "Caixa de Barcelona" for financial support.
REFERENCES

8) R.E. Shrock and M.B. Voloshin - Phys.Letters 87B (1979) 375;
12) S.M. Berman and D.A. Geffen - Nuovo Cimento 18 (1960) 1192;
13) C. Quigg and J.D. Jackson - UCRL-18487 (1968), unpublished.
14) Ll. Ametller, L. Bergström, A. Bramon and E. Massó - CERN Preprint TH.3501 (1983), to be published in Nuclear Physics B.
15) L. Bergström, E. Massó and P. Singer - CERN Preprint TH. 3581 (1983) and
18) M.B. Voloshin and E.P. Shabalin - Pis'ma Zh.Eksp.Teor.Fiz. 23 (1976) 123
 [ETP Letters 23 (1976) 107].
26) A.J. Buras - in Ref. 8).
31) See, e.g.:

FIGURE CAPTIONS

Fig. 1 General two-photon graph contributing to $\Lambda_{\text{e.m.}}$.

Fig. 2 Pole diagrams for the $K_L + \gamma^*\gamma^*$ form factor. The weak $\Delta S = 1$ transition occurs either on the mesonic leg (a) or on the photon leg (b).

Fig. 3 (a) Allowed band for the $\Lambda_{\text{e.m.}}$ contribution (normalized to the absorptive part of the amplitude) as a function of the parameter α.
(b) Allowed bands for the non-photon contribution to the $K_L + \mu^+\mu^-$ amplitude as a function of α. The over-all unknown sign of Re Λ gives rise to the two bands.

Fig. 4 Allowed bands for the top-quark mass as a function of α and of the $\Gamma(K_L + e^+e^-\gamma)/(K_L + \mu^+\mu^-\gamma)$ ratio (see text). The differently hatched areas come from the two separate bands shown in Fig. 3(b). The value used for B is 0.42 (a), and 0.33 (b), corresponding to the bag model and PCAC calculations, respectively.

Fig. 5 Correlation between the top quark mass and the B meson lifetime as emerging from our analysis.
Fig. 3a

\[\frac{A_e, m}{\text{mA}} \]

\[\alpha \]

Fig. 3b

\[\frac{A_w}{\text{mA}} \]

\[\alpha \]
Fig. 4a $\Gamma(K_L \rightarrow e^+e^-\gamma)/\Gamma(K_L \rightarrow \mu^+\mu^-\gamma)$

Fig. 4b $\Gamma(K_L \rightarrow e^+e^-\gamma)/\Gamma(K_L \rightarrow \mu^+\mu^-\gamma)$