Studies of the decay $B^0_s \rightarrow D_s^+ K^-$

Barbara Storaci

on behalf of the LHCb Collaboration
Motivation

Why is $B^0_s \rightarrow D_s^+ K^-$ interesting?

- Test SM through CKM-unitarity triangle
- γ the least constraint parameters by direct measurements
- Clean time-dependent measurement with $B^0_s \rightarrow D_s^+ K^-$
- $\text{BR}(B^0_s \rightarrow D_s^+ K^-)$ still poorly known, $\pm 23\%$

\rightarrow Today the World Best Measurement of its BR

[K. Nakamura et al. (Particle Data Group), Journal of Physics G37, 075021 (2010)]
Key ingredients:

• Large b production rate $\sim 100 \text{ kHz } b\bar{b}$

• Excel. Prop. Time Res.

• Excel. PID $\epsilon_K \sim 95\%$, $O(<5\%)$

• π^- misid

• Sensitivity to hadronic final states

• Specific hadronic trigger

• Final state $D_s^- K^+$ accessible by both B_0^s and \bar{B}_0^s

• Large interference expected

\[\gamma = \text{weak phase btw. } V^*_{cb} V_{ub} \]
Key ingredients:
• Large b production rate

$\gamma =$ weak phase btw. $V^*_{cb} V_{ub}$

- Final state $D_s^- K^+$ accessible by both B^0_s and \bar{B}^0_s
- Large interference expected
Key ingredients:

- Large b production rate
- Excel. PID
 - $\varepsilon_{K} \approx 95\%$, $\pi < 5\%$
- Sensitive to hadronic final states
- Specific hadronic trigger
- $\gamma = \text{weak phase btw. } V^{*}_{cb} V_{ub}$
- Final state $D_s^{-} K^+$ accessible by both B^0_s and \overline{B}^0_s
- Large interference expected

~ 60 kHz bb
Time Dependent Measurement

Key ingredients:
• Large b production rate ~60 kHz bb
• Excellent Proper Time Resolution

$\gamma =$ weak phase btw. $V_{cb}^* V_{ub}$

• Final state $D_s^- K^+$ accessible by both B^0_s and \bar{B}^0_s
• Large interference expected
Key ingredients:

- Large b production rate \(\sim 60 \text{ kHz } \overline{b}b \)
- Excellent Proper Time Resolution \(\sim 50 \text{ fs} \)
Key ingredients:

- Large b production rate
 - ~ 60 kHz bb
- Excellent Proper Time Resolution
 - ~ 50 fs
- Excellent Particle Identification (PID)
Time Dependent Measurement

Key ingredients:

- Large b production rate
 - ~ 60 kHz bb
- Excellent Proper Time Resolution
 - ~ 50 fs
- Excellent Particle Identification (PID)
 - $\varepsilon_K \sim 95\%$, $O(<5\%)$ π-K misid

Final state $D_s^- K^+$ accessible by both B^0_s and \bar{B}^0_s
Large interference expected
Key ingredients:

- Large b production rate
- Excellent Proper Time Resolution
- Excellent Particle Identification (PID)
- Sensitivity to hadronic final states

- Final state $D_s^- K^+$ accessible by both B^0_s and \bar{B}^0_s
- Large interference expected

\[\gamma = \text{weak phase btw. } V^*_{cb} V_{ub} \]
Key ingredients:

- Large b production rate \(\sim 60 \text{ kHz } bb \)
- Excellent Proper Time Resolution \(\sim 50 \text{ fs} \)
- Excellent Particle Identification (PID) \(\varepsilon_K \sim 95\% , O(<5\%) \pi-K \) misid
- Sensitivity to hadronic final states specific hadronic trigger
Time Dependent Measurement

First step is the Branching Fraction measurement!

\[\gamma = \text{weak phase btw. } V^{*}_{cb} V_{ub} \]

- Final state \(D_s^- K^+ \) accessible by both \(B_s^0 \) and \(\overline{B}_s^0 \)
- Large interference expected
0.37 fb⁻¹ of LHCb data used (first part of 2011)

3 decays with the same topology

\[B^0 \rightarrow D^- (K^+ 2\pi^-)\pi^+ \]
\[B_s^0 \rightarrow D_s^- (K^+ K^- \pi^-)\pi^+ \]
\[B_s^0 \rightarrow D_s^\pm (K^\mp K^\pm \pi^\pm)K^\mp \]

Meas. of BR(\(B_s^0 \rightarrow D_s^- \pi^+ \)) using fs/fd meas. In LHCb
Meas. of BR(\(B_s^0 \rightarrow D_s^\pm K^\mp \))

✓ Same trigger, stripping and offline selection (using BDT) to minimize efficiency corrections
✓ PID applied at the latest stage for distinguishing these decays channels

arXiv:1111.2357 [hep-ex]
Backgrounds

1. Combinatorial Background:
 - Random π or K forming fake D or Ds
 - Real prompt D or Ds combined with random π or K to form a fake B^0 or B^0_s

Our selection is efficiently cutting it!
1. Combinatorial Background:
 - Random π or K forming fake D or D_s
 - Real prompt D or D_s combined with random π or K to form a fake B^0 or B^{0_s}

2. Partially Reconstructed Background:
 - Lost one particle in the reconstruction, ex: $B_s^0 \rightarrow D^-_s \rho^+$ where the π^0 from the ρ^+ is missed.

- Topology similar to the signal
- Sitting mostly on the left of the signal

\[B_s^0 \rightarrow D^-_s \rho^+ \]
Backgrounds

1. Combinatorial Background:
 - Random π or K forming fake D or Ds
 - Real prompt D or Ds combined with random π or K to form a fake B^0 or B^0_s

2. Partially Reconstructed Background:
 - Lost one particle in the reconstruction, ex: $B^0_s \rightarrow D^- \rho^+$ where the π^0 from the ρ^+ is missed

3. Misidentified Background:
 - $B^0 \rightarrow (D^- \rightarrow D^-_s)\pi^+$ under $B^0_s \rightarrow D^-_s \pi^+$

Sitting under the signal
Backgrounds

1. Combinatorial Background:
 - Random π or K forming fake D or Ds
 - Real prompt D or Ds combined with random π or K to form a fake B^0_s or B^0

2. Partially Reconstructed Background:
 - Lost one particle in the reconstruction, ex: $B^0_s \rightarrow D_s^- \rho^+$ where the π^0 from the ρ^+ is missed

3. Misidentified Background:
 - $B^0 \rightarrow (D^- \rightarrow D_s^-)\pi^+$
 under $B^0_s \rightarrow D_s^- \pi^+$
 - $B^0 \rightarrow (D^- \rightarrow D_s^-)K^+$
 under $B^0_s \rightarrow D_s^- K^+$
 - $B^0 \rightarrow D_s^- (\pi^+ \rightarrow K^+)$
 under $B^0_s \rightarrow D_s^- K^+$
 - $B^0 \rightarrow (D^- \rightarrow D_s^-) (\pi^+ \rightarrow K^+)$
 under $B^0_s \rightarrow D_s^- K^+$
Fit Strategy

Signal shape: double crystal ball function

Background shapes:
- **MisID**: from data using a reweighting procedure to correct for the momentum dependency of PID selection
- **Part. Reco**: template from MC
 - Gaussian constraint on the yields if the BR known or estimable
- **Comb**: exponential shape for $B_{(s)}^{0} \rightarrow D_{(s)}^{-} \pi^{+}$, flat for $B_{s}^{0} \rightarrow D_{s}^{\pm} K^{\mp}$
 - Checked with wrong-sign sample

- Sample divided according to the magnet polarities to achieve maximum sensitivity
- Simultaneous fit: same signal shape for both polarities
\[\mathcal{B}(B^0_s \rightarrow D^-_s \pi^+) \]

Both polarities together for illustrative purpose

Using LHCb measurement:

\[
\frac{f_s}{f_d} = (0.268 \pm 0.008) + 0.022 \\
\frac{N_{B^0_s \rightarrow D^-_s \pi^+}}{N_{B^0 \rightarrow D^- \pi^+}} \mathcal{B}(D^+ \rightarrow K^- \pi^+ \pi^+) + 0.020
\]

\[
\mathcal{B}(B^0_s \rightarrow D^-_s \pi^+) = (2.95 \pm 0.05 \pm 0.17^{+0.18}_{-0.22}) \times 10^{-3} \\
\text{Stat.} \quad \text{Syst.} \quad \text{From } f_s/f_d
\]

Previous Best Measurement: \((3.2 \pm 0.5) \times 10^{-3}\) [K. Nakamura et al. (Particle Data Group), Journal of Physics G37, 075021 (2010)]

[arXiv:1111.2357 [hep-ex]]
Both polarities together for illustrative purpose

\[\text{Previous Best Measurement: } (3.0 \pm 0.7) \times 10^{-4} \]

\[[K. \text{ Nakamura et al. (Particle Data Group)}, \text{Journal of Physics G37, 075021 (2010)}] \]
• World best measurement of the BR($B^0_s \rightarrow D_s^-\pi^+$) and BR($B^0_s \rightarrow D_s^+K^-$) with 0.37 fb$^{-1}$ collected in LHCb
 – $B^0_s \rightarrow D_s^+K^-$ measurement in agreement with prev. measurements, error reduced to \sim12%
 – $B^0_s \rightarrow D_s^-\pi^+$: best known B^0_s mode now with an uncertainty of \sim10% (before was \sim16%)

• First step through the measurement of γ with a $B^0_s \rightarrow D_s^+K^-$ time-dependent analysis
 – We already have 1.0 fb$^{-1}$ of data collected last year
Backup

Our Disaster Recovery Plan Goes Something Like This...

HELP! HELP!

DILBERT
By Scott Adams
Gaussian Const. $B^0_s \rightarrow D_s^- K^+$

Table 3: Gaussian constraints applied in the $B^0_s \rightarrow D_s^- K^+$ fit.

<table>
<thead>
<tr>
<th>Background type</th>
<th>Magn. Down</th>
<th>Magn. Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0_s \rightarrow D_s^* \pi^+$</td>
<td>70 ± 23</td>
<td>63 ± 21</td>
</tr>
<tr>
<td>$B^0_s \rightarrow D_s^* K^+$</td>
<td>80 ± 27</td>
<td>72 ± 34</td>
</tr>
<tr>
<td>$B^0_s \rightarrow D_s^- \rho^+$</td>
<td>150 ± 50</td>
<td>135 ± 45</td>
</tr>
<tr>
<td>$B^0_s \rightarrow D_s^- K^{*+}$</td>
<td>150 ± 50</td>
<td>135 ± 45</td>
</tr>
<tr>
<td>$B^0_s \rightarrow D_s^* \rho^+$</td>
<td>50 ± 17</td>
<td>45 ± 15</td>
</tr>
<tr>
<td>$B^0_s \rightarrow D_s^- K^{*+}$</td>
<td>50 ± 17</td>
<td>45 ± 15</td>
</tr>
<tr>
<td>$\Lambda_b \rightarrow D_s^- p + \Lambda_b \rightarrow D_s^* p$</td>
<td>80 ± 27</td>
<td>72 ± 34</td>
</tr>
</tbody>
</table>
Systematic uncertainties

Table 4: The final systematic uncertainties for the measurement of the branching fractions of $B_s^0 \rightarrow D_s^- K^+$ and $B_s^0 \rightarrow D_s^- \pi^+$.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>All non-PID selection ($B_s^0 \rightarrow D_s^- K^+$ wrt. $B_s^0 \rightarrow D_s^- \pi^+$)</td>
<td>2%</td>
</tr>
<tr>
<td>All non-PID selection ($B^0 \rightarrow D^- \pi^+$ wrt. $B_s^0 \rightarrow D_s^- \pi^+$)</td>
<td>2%</td>
</tr>
<tr>
<td>All non-PID selection ($B_s^0 \rightarrow D_s^- K^+$ wrt. $B^0 \rightarrow D^- \pi^+$)</td>
<td>3%</td>
</tr>
<tr>
<td>Fit model $B^0 \rightarrow D^- \pi^+$</td>
<td>1.0%</td>
</tr>
<tr>
<td>Fit model $B_s^0 \rightarrow D_s^- \pi^+$</td>
<td>1.4%</td>
</tr>
<tr>
<td>Fit model $B_s^0 \rightarrow D_s^- K^+$</td>
<td>2.0%</td>
</tr>
<tr>
<td>PID selection ($B_s^0 \rightarrow D_s^- K^+$ wrt. $B_s^0 \rightarrow D_s^- \pi^+$)</td>
<td>1.8%</td>
</tr>
<tr>
<td>PID selection ($B^0 \rightarrow D^- \pi^+$ wrt. $B_s^0 \rightarrow D_s^- \pi^+$)</td>
<td>1.3%</td>
</tr>
<tr>
<td>PID selection ($B_s^0 \rightarrow D_s^- K^+$ wrt. $B^0 \rightarrow D^- \pi^+$)</td>
<td>2.2%</td>
</tr>
<tr>
<td>Efficiency ratio ($B_s^0 \rightarrow D_s^- K^+$ wrt. $B_s^0 \rightarrow D_s^- \pi^+$)</td>
<td>1.5%</td>
</tr>
<tr>
<td>Efficiency ratio ($B^0 \rightarrow D^- \pi^+$ wrt. $B_s^0 \rightarrow D_s^- \pi^+$)</td>
<td>1.6%</td>
</tr>
<tr>
<td>Efficiency ratio ($B_s^0 \rightarrow D_s^- K^+$ wrt. $B^0 \rightarrow D^- \pi^+$)</td>
<td>1.6%</td>
</tr>
<tr>
<td>Total ($B_s^0 \rightarrow D_s^- K^+$ wrt. $B_s^0 \rightarrow D_s^- \pi^+$)</td>
<td>±3.9%</td>
</tr>
<tr>
<td>Total ($B^0 \rightarrow D^- \pi^+$ wrt. $B_s^0 \rightarrow D_s^- \pi^+$)</td>
<td>±3.4%</td>
</tr>
<tr>
<td>Total ($B_s^0 \rightarrow D_s^- K^+$ wrt. $B^0 \rightarrow D^- \pi^+$)</td>
<td>±4.6%</td>
</tr>
</tbody>
</table>
Table 1: PID efficiency and misidentification probabilities, split by magnet polarity. The first two lines refer to the bachelor track selection, the third line is the D^- efficiency and the fourth the D_s^- efficiency. Probabilities are obtained from the efficiencies in the D^* calibration sample, binned in momentum and p_T. Only bachelor tracks with momentum below 100 GeV/c^2 are considered. The uncertainties shown are the statistical uncertainties due to the finite number of signal events used in the reweighting.

<table>
<thead>
<tr>
<th>PID Cut</th>
<th>Efficiency</th>
<th>MissID</th>
</tr>
</thead>
<tbody>
<tr>
<td>K DLL$_{K-\pi} > 5$</td>
<td>(83.5 ± 0.2) %</td>
<td>(83.3 ± 0.2) %</td>
</tr>
<tr>
<td>π DLL$_{K-\pi} < 0$</td>
<td>(85.8 ± 0.2) %</td>
<td>(84.2 ± 0.2) %</td>
</tr>
<tr>
<td>D^-</td>
<td>85.7 ± 0.2</td>
<td>84.1 ± 0.2</td>
</tr>
<tr>
<td>D_s^-</td>
<td>78.4 ± 0.2</td>
<td>77.6 ± 0.2</td>
</tr>
</tbody>
</table>
PID performance performed on data from D* sample
• Evaluated eff. and midID rate on D* sample for the PID cuts applied in the analysis (in bins of p and pt)
• No dependence on track multiplicity since both signal and contr. channel are selected with the same trigger
• Different curve for magnet up and magnet down