Measurement of the CP-violating phase ϕ_s in the decay $B^0_s \rightarrow J/\psi \phi$

The LHCb Collaboration

R. Aaij23, C. Abellan Beteta35,n, B. Adeva36, M. Adinolfi42, C. Adrover6, A. Affolder48, Z. Ajaltouni5, J. Albrecht37, F. Alessio37, M. Alexander47, G. Alkhazov29, P. Alvarez Cartelle36, A.A. Alves Jr22, S. Amato2, Y. Amhis38, J. Anderson39, R.B. Appleby50, O. Aquines Gutierrez10, F. Archilli18,37, L. Arrabito53, A. Artamonov34, M. Artuso52,37, E. Aslanides6, G. Auriumma22,m, S. Bachmann11, J.J. Back44, D.S. Bailey50, V. Balagura30,37, W. Baldini16, R.J. Barlow50, C. Barschel37, S. Barsuk7, W. Barter43, A. Bates47, C. Bauer10, Th. Bauer23, A. Bay38, I. Bediaga1, S. Belogurov30, K. Belous34, I. Belyaev30,37, E. Ben-Haim8, M. Benayoun8, G. Bencivenni18, S. Benson46, J. Benton42, R. Bernet38, M.-O. Betletter3, M. van Beuzekom27, A. Bien11, S. Bifani12, T. Bird50, A. Bizzeti17,h, P.M. Bjornstad50, T. Blake37, F. Blanc38, C. Blanks49, J. Blouw11, S. Blusk32, A. Bobrov33, V. Bocci22, A. Bondar33, N. Bondar29, W. Bonivento15, S. Borghi37,50, A. Borgia32, T.J.W. Bowcock48, C. Bozzi16, T. Brambach9, J. van den Brand24, J. Bressieux38, D. Brett50, M. Britsch10, T. Britton52, N.H. Brook42, H. Brown48, A. Büchler-Germann39, I. Burtuca28, A. Bursche39, J. Buylaert37, S. Cadeddu15, O. Callot7, M. Calvi20,j, M. Calvo Gomez35,n, A. Camboni35, P. Campana18,37, A. Carbone14, G. Carboni21,k, R. Cardinale19,j,37, A. Cardini15, L. Carson49, K. Carvalho Akiba2, G. Casso48, M. Cattaneo37, Ch. Cauet9, M. Charles51, Ph. Charpentier37, N. Chiapolini39, K. Ciba37, X. Cid Vidal36, G. Ciezarek49, P.E.L. Clarke46,37, M. Clemencic37, H.V. Clift43, J. Closier37, C. Coca28, V. Coco23, J. Cogan6, P. Collins37, A. Comerma-Montells35, F. Constantini28, A. Contu51, A. Cook42, M. Coombes42, G. Corti37, G.A. Cowan38, R. Currie46, C. D’Ambrosio37, P. David6, P.N.Y. David23, I. De Bonis4, S. De Capua21,k, M. De Cian39, F. De Lorenzi12, J.M. De Miranda1, L. De Paula2, P. De Simone18, D. Decamp4, M. Deckenhoff9, H. Degaudenzi37,38, L. Del Buono8, C. Deplano15, D. Derkach14,37, O. Deschamps5, F. Dettori24, J. Dickens43, H. Dijkstra37, P. Diniz Batista1, F. Domingo Bonal35,n, S. Donleavy48, F. Dordei11, A. Dosil Suárez36, D. Dossett44, A. Dovbnya40, F. Dupertuis38, R. Dzhelyadin34, A. Dziurda25, S. Easo45, U. Egede49, V. Egorychev30, S. Eidelman33, D. van Eijk23, F. Eisele11, S. Eisenhardt46, R. Elkelhof9, L. Eklund47, Ch. Elsasser39, D. Elsby55, D. Esperante Pereira36, L. Estève43, A. Falabella16,14,c, E. Fanchini20,j, C. Färber11, G. Fardell46, C. Farinelli23, S. Farry12, V. Fave38, V. Fernandez Albor36, M. Ferro-Luzzi37, S. Filipov32, C. Fitzpatrick46, M. Fontana10, F. Fontanelli19,k, R. Forty37, M. Frank37, C. Frei37, M. Frosini17,f,37, S. Furcas29, A. Gallas Torrelle36, D. Galli14,c, M. Gandelmann2, P. Gandini51, Y. Gao3, J-C. Garnier7, J. Garofoli32, J. Garra Tico43, L. Garrido35, D. Gascon35, C. Gaspar37, N. Gauvin38, M. Gersabeck37, T. Gershon44,37, Ph. Ghez4, V. Gibson43, V.V. Gligorov37, C. Göbel54, D. Golubkov30, A. Golutvin49,30,37, A. Gomes2, H. Gordon51, M. Grabalosa Gándara35, R. Graciani Diaz15, L.A. Granado Cardoso37, E. Graugés35, G. Graziani17, A. Grecu28, E. Greening51, S. Gregson43, B. Gui52, E. Gushchin32, Yu. Gu34, T. Gys37, G. Haelfeli38, C. Haen37, S.C. Haines43, T. Hampson42, S. Hansmann-Menzemer1, R. Harji40, N. Harnew51, J. Harrison50, P.F. Harrison44, T. Hartmann56, J. He7, V. Heijne43, K. Hennessy43, P. Henrard51, J.A. Hernando Morata36, E. van Herwijnen37, E. Hicks38, K. Holubyev11,
We present a measurement of the time-dependent CP-violating asymmetry in $B^0 \to J/\psi \phi$ decays, using data collected with the LHCb detector at the LHC. The decay time distribution of $B^0 \to J/\psi \phi$ is characterized by the decay widths Γ_s and Γ_t of the heavy and light mass eigenstates of the $B^0_s - B^0_s$ system and by a CP-violating phase δ. In a sample of about 8500 $B^0_s \to J/\psi \phi$ events isolated from 0.37 fb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV we measure $\phi_s = 0.15 \pm 0.18$ (stat) ± 0.06 (syst) rad. We also find an average B^0_s decay width $\Gamma_s \equiv (\Gamma_L + \Gamma_H)/2 = 0.657 \pm 0.009$ (stat) ± 0.008 (syst) ps$^{-1}$ and a decay width difference $\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H = 0.123 \pm 0.029$ (stat) ± 0.011 (syst) ps$^{-1}$. Our measurement is insensitive to the transformation $\langle \phi_s, \Delta \Gamma_s \rangle \to (\pi - \phi_s, -\Delta \Gamma_s)$.

To be submitted to Physical Review Letters
FIG. 1. Invariant mass distribution for $B^0_s \rightarrow \mu^+\mu^-K^+K^-$ candidates with the mass of the $\mu^+\mu^-$ pair constrained to the nominal J/ψ mass. Curves for fitted contributions from signal (dashed), background (dotted) and their sum (solid) are overlaid.

between the K^- momentum and the J/ψ momentum in the rest frame of the ϕ.

We perform an unbinned maximum likelihood fit to the invariant mass $m_{B^0_s}$, the decay time t, and the three decay angles Ω. The probability density function (PDF) used in the fit consists of signal and background components which include detector resolution and acceptance effects. The PDFs are factorised into separate components for the mass and for the remaining observables.

The signal $m_{B^0_s}$ distribution is described by two Gaussian functions with a common mean. The mean and width of the narrow Gaussian are fit parameters. The fraction of the second Gaussian and its width relative to the narrow Gaussian are fixed to values obtained from simulated events. The $m_{B^0_s}$ distribution for the combinatorial background is described by an exponential function with a slope determined by the fit. Possible peaking background from decays with similar final states such as $B^0 \rightarrow J/\psi K^{*0}$ is found to be negligible from studies using simulated events.

The distribution of the signal decay time and angles is described by a sum of ten terms, corresponding to the four polarization amplitudes and their interference terms. Each of these is the product of a time-dependent function and an angular function [12]

$$
\frac{d^4\Gamma(B^0_s \rightarrow J/\psi\phi)}{dt\,d\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega).
$$

The time-dependent functions $h_k(t)$ can be written as

$$
h_k(t) = N_k e^{-\Gamma t} \left[c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) + a_k \cos \left(\frac{1}{2} \Delta \Gamma_s t \right) + b_k \sin \left(\frac{1}{2} \Delta \Gamma_s t \right) \right].
$$

where Δm_s is the B^0_s oscillation frequency. The coefficients N_k and a_k, \ldots, d_k can be expressed in terms of ϕ_s and four complex transversity amplitudes A_i at $t = 0$. The label i takes the values $\{\perp \parallel, 0\}$ for the three P-wave amplitudes and S for the S-wave amplitude. In the fit we parameterize each $A_i(0)$ by its magnitude squared $|A_i(0)|^2$ and its phase δ_i, and adopt the convention $\delta_0 = 0$ and $\sum |A_i(0)|^2 = 1$. For a particle produced in a B^0_s flavour eigenstate the coefficients in Eq. [2] and the angular functions $f_k(\Omega)$ are then, see [13] [14], given by

k	$f_k(\theta, \psi, \varphi)$	N_k	a_k	b_k	c_k	d_k
1	$2 \cos^2 \psi \left(1 - \sin^2 \theta \cos^2 \phi \right)$	$	A_0(0)	^2$	1	$- \cos \phi_s$
2	$\sin^2 \psi \left(1 - \sin^2 \theta \sin^2 \phi \right)$	$	A_\perp(0)	^2$	1	$- \cos \phi_s$
3	$\sin^2 \psi \sin^2 \theta$	$	A_\perp(0)	^2$	1	$\cos \phi_s$
4	$- \sin^2 \psi \sin 2\theta \sin \phi$	$	A_\parallel(0), A_\perp(0)	$	0	$- \cos(\delta_\parallel - \delta_0) \sin \phi_s$
5	$\frac{1}{2} \sqrt{2} \sin 2\psi \sin^2 \theta \sin 2\phi$	$	A_0(0), A_\parallel(0), A_\perp(0)	$	$\cos(\delta_\parallel - \delta_0)$	0
6	$\frac{1}{2} \sqrt{2} \sin 2\psi \sin^2 \theta \cos \phi$	$	A_0(0), A_\parallel(0), A_\perp(0)	$	0	$- \cos(\delta_\parallel - \delta_0) \sin \phi_s$
7	$\frac{2}{3} (1 - \sin^2 \theta \cos^2 \phi)$	$	A_S(0)	^2$	1	$\cos \phi_s$
8	$\frac{1}{2} \sqrt{6} \sin \psi \sin^2 \theta \sin 2\phi$	$	A_S(0), A_\parallel(0), A_\perp(0)	$	0	$- \sin(\delta_0 - \delta_S) \sin \phi_s$
9	$\frac{1}{2} \sqrt{6} \sin \psi \sin^2 \theta \cos \phi$	$	A_S(0), A_\parallel(0), A_\perp(0)	$	$	\sin(\delta_\parallel - \delta_S)
10	$\frac{1}{2} \sqrt{3} \cos \psi \left(1 - \sin^2 \theta \cos^2 \phi \right)$	$	A_S(0), A_0(0)	$	0	$- \sin(\delta_0 - \delta_S) \sin \phi_s$

We neglect CP violation in mixing and in the decay amplitudes. The differential decay rates for a B^0_s meson produced at time $t = 0$ are obtained by changing the sign of ϕ_s, $A_\perp(0)$ and $A_S(0)$, or, equivalently, the sign of c_k and d_k in the expressions above. The PDF is invariant under the transformation $(\phi_s, \Delta \Gamma_s, \delta_\parallel, \delta_\perp, \delta_S) \rightarrow (\pi - \phi_s, -\Delta \Gamma_s, -\delta_\parallel, \pi - \delta_\perp, -\delta_S)$ which gives rise to a two-fold ambiguity in the results.
We have verified that correlations between decay time and decay angles in the background are small enough to be ignored. Using the data in the m_{B} sidebands, which we define as selected events with m_{B} outside the range $5311 - 5411$ MeV, we determine that the background decay time distribution can be modelled by a sum of two exponential functions. The lifetime parameters and the relative fraction are determined by the fit. The decay angle distribution is modelled using a histogram obtained from the data in the m_{B} sidebands. The normalisation of the background with respect to the signal is determined by the fit.

The measurement of ϕ_s requires knowledge of the flavour of the B_s^0 meson at production. We exploit the following flavour specific features of the accompanying (non-signal) b-hadron decay to tag the B_s^0 flavour: the charge of a muon or an electron with large transverse momentum produced by semileptonic decays, the charge of a kaon from a subsequent charmed hadron decay and the momentum-weighted charge of all tracks included in the inclusively reconstructed decay vertex. These signatures are combined using a neural network to estimate a per-event mistag probability, ω, which is calibrated with data from control channels. The fraction of tagged events in the signal sample is $\epsilon_{\text{tag}} = (24.9 \pm 0.5)\%$. The dilution of the CP asymmetry due to the mistag probability is $D = 1 - 2\omega$. The effective dilution in our signal sample is $D = 0.277 \pm 0.006$ (stat) ± 0.016 (syst), resulting in an effective tagging efficiency of $\epsilon_{\text{tag}} D^2 = (1.91 \pm 0.23)\%$. The uncertainty in ω is taken into account by allowing calibration parameters described in Ref. 15 to vary in the fit with Gaussian constraints given by their estimated uncertainties. Both tagged and untagged events are used in the fit. The untagged events dominate the sensitivity to the lifetimes and amplitudes.

To account for the decay time resolution, the PDF is convolved with a sum of three Gaussian functions with a common mean and different widths. Studies on simulated data have shown that selected prompt $J/\psi K^+ K^-$ combinations have nearly identical resolution to signal events. Consequently, we determine the parameters of the resolution model from a fit to the decay time distribution of such prompt combinations in the data, after subtracting non-J/ψ events with the sPlot method 16 using the $\mu^+\mu^-$ invariant mass as discriminating variable. The resulting dilution is equivalent to that of a single Gaussian with a width of 50 fs. The uncertainty on the decay time resolution is estimated to be 4% by varying the selection of events and by comparing in the simulation the resolutions obtained for prompt combinations and B_s^0 signal events. This uncertainty is accounted for by scaling the widths of the three Gaussians by a common factor of 1.00 ± 0.04, which is varied in the fit subject to a Gaussian constraint. In similar fashion the uncertainty on the mixing frequency is taken into account by varying it within the constraint imposed by the LHCb measurement $\Delta m_s = 17.63 \pm 0.11$ (stat) ± 0.02 (syst) ps$^{-1}$ 17.

The decay time distribution is affected by two acceptance effects. First, the efficiency decreases approximately linearly with decay time due to inefficiencies in the reconstruction of tracks far from the central axis of the detector. This effect is parameterized as $\epsilon(t) \propto (1 - \beta t)$ where the factor $\beta = 0.016$ ps$^{-1}$ is determined from simulated events. Second, a fraction of approximately 14% of the events has been selected exclusively by a trigger path that exploits large impact parameters of the decay products, leading to a drop in efficiency at small decay times. This effect is described by the empirical acceptance function $\epsilon(t) \propto (at)^c / [1 + (at)^c]$, applied only to these events. The parameters a and c are determined in the fit. As a result, the events selected with impact parameter cuts do effectively not contribute to the measurement of Γ_s.

The uncertainty on the reconstructed decay angles is small and is neglected in the fit. The decay angle acceptance is determined using simulated events. The deviation from a flat acceptance is due to the LHCb forward geometry and selection requirements on the momenta of final state particles. The acceptance varies by less than 5% over the full range for all three angles.

The results of the fit for the main observables are shown in Table I. The likelihood profile for δ is not parabolic and we therefore quote the 68% confidence level (CL) range $3.0 < \delta < 3.5$. The correlation coefficients for the statistical uncertainties are $\rho(\Gamma_s, \Delta\Gamma_s) = -0.30$, $\rho(\Gamma_s, \phi_s) = 0.12$ and $\rho(\Delta\Gamma_s, \phi_s) = -0.08$. Figure 2 shows the data distribution for decay time and angles with the projections of the best fit PDF overlaid. To assess the overall agreement of the PDF with the data we calculate the goodness of fit based on the point-to-point dissimilarity test 18. The p-value obtained is 0.68. Figure 3 shows the 68%, 90% and 95% CL contours in the $\Delta\Gamma_s-\phi_s$ plane. These contours are obtained from the likelihood profile after including systematic uncertainties, and correspond to decreases in the natural logarithm of the likelihood, with respect to its maximum, of 1.15, 2.30 and 3.00 respectively.

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>$\sigma_{\text{stat.}}$</th>
<th>σ_{syst}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_s [ps$^{-1}$]</td>
<td>0.657</td>
<td>0.009</td>
<td>0.008</td>
</tr>
<tr>
<td>$\Delta\Gamma_s$ [ps$^{-1}$]</td>
<td>0.123</td>
<td>0.029</td>
<td>0.011</td>
</tr>
<tr>
<td>$</td>
<td>A_{\perp}(0)</td>
<td>^2$</td>
<td>0.237</td>
</tr>
<tr>
<td>$</td>
<td>A_0(0)</td>
<td>^2$</td>
<td>0.497</td>
</tr>
<tr>
<td>$</td>
<td>A_0(0)</td>
<td>^2$</td>
<td>0.042</td>
</tr>
<tr>
<td>δ_\perp [rad]</td>
<td>2.95</td>
<td>0.37</td>
<td>0.12</td>
</tr>
<tr>
<td>δ_\parallel [rad]</td>
<td>2.98</td>
<td>0.36</td>
<td>0.12</td>
</tr>
<tr>
<td>ϕ_s [rad]</td>
<td>0.15</td>
<td>0.18</td>
<td>0.06</td>
</tr>
</tbody>
</table>
The sensitivity to \(\phi_s \) stems mainly from its appearance as the amplitude of the \(\sin(\Delta m_s t) \) term in Eq. [1] which is diluted by the decay time resolution and mistag probability. Systematic uncertainties from these sources and from the mixing frequency are absorbed in the statistical uncertainties as explained above. Other systematic uncertainties are determined as follows, and added in quadrature to give the values shown in Table I.

To test our understanding of the decay angle acceptance we compare the rapidity and momentum distributions of the kaons and muons of selected \(B_s^0 \) candidates in data and simulated events. Only in the kaon momentum distribution do we observe a significant discrepancy. We reweight the simulated events to match the data, derive the acceptance corrections and assign the resulting difference in the fit result as a systematic uncertainty. This is the dominant contribution to the systematic uncertainty on all parameters except \(\Gamma_s \). The limited size of the simulated event sample leads to a small additional uncertainty. The systematic uncertainty due to the background decay angle modelling was found to be negligible by comparing with a fit where the background was removed statistically using the sPlot method [16].

In the fit each \(|A_i(0)|^2 \) is constrained to be greater than zero, while their sum is constrained to unity. This can result in a bias if one or more of the amplitudes is small. This is the case for the S-wave amplitude, which is compatible with zero within 3.2 standard deviations. The resulting biases on the \(|A_i(0)|^2 \) have been determined using simulations to be less than 0.010 and are included as systematic uncertainties.

Finally, a systematic uncertainty of 0.008 ps\(^{-1} \) was assigned to the measurement of \(\Gamma_s \) due to the uncertainty in the decay time acceptance parameter \(\beta \). Other systematic uncertainties, such as those from the momentum scale and length scale of the detector, were found to be negligible.

In summary, in a sample of 0.37 fbt\(^{-1} \) of pp collisions at \(\sqrt{s} = 7 \) TeV collected with the LHCb detector we observe 8492 ± 97 \(B_s^0 \to J/\psi K^+ K^- \) events with \(K^+ K^- \) invariant mass within \(\pm 12 \) MeV of the \(\phi \) mass. With these data we perform the most precise measurements of \(\phi_s, \Delta \Gamma_s \) and \(\Gamma_s \) in \(B_s^0 \to J/\psi \phi \) decays, substantially improving upon previous measurements [7] and providing the first direct evidence for a non-zero value of \(\Delta \Gamma_s \).

Two solutions with equal likelihood are obtained, related by the transformation \((\phi_s, \Delta \Gamma_s) \to (\pi - \phi_s, -\Delta \Gamma_s) \). The solution with positive \(\Delta \Gamma_s \) is

\[
\phi_s = 0.15 \pm 0.18 \text{ (stat)} \pm 0.06 \text{ (syst) rad}, \\
\Gamma_s = 0.657 \pm 0.009 \text{ (stat)} \pm 0.008 \text{ (syst) ps}^{-1}, \\
\Delta \Gamma_s = 0.123 \pm 0.029 \text{ (stat)} \pm 0.011 \text{ (syst) ps}^{-1},
\]

and is in agreement with the Standard Model prediction [3] [4]. Values of \(\phi_s \) in the range 0.52 < \(\phi_s \) < 2.62 and -2.93 < \(\phi_s \) < -0.21 are excluded at 95% confidence level. In a future publication we shall differentiate between the two solutions by exploiting the dependence of the phase difference between the P-wave and S-wave contributions on the \(K^+ K^- \) invariant mass [14].

ACKNOWLEDGEMENTS

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of
the LHC. We thank the technical and administrative staff at CERN and at the LHCb institutes, and acknowledge support from the National Agencies: CAPES, CNPq, CAPES, CERN; NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS (Romania); MinES of Russia and Rosatom (Russia); MICINN, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7 and the Region Auvergne.

