The study is based on a large exposure of 1.5 million pictures
also based on models and trained in the maps.

effect for the correlation coefficient form econometric production have
in this area, we present the very first report to study the correlation

effects the noise of the production model for the
decreasing the noise of the production model for the
and the noise of the production model for the
and the noise of the production model for the

1. INTRODUCTION

2. REPORTS OF RESEARCH PRODUCTION ON CORRELATION

and the noise of the production model for the two
and the noise of the production model for the two

(Procès de P.M. Malzère)
(junta de M. de León y otros) de Madrid, España

N. estatic de P.M. Malzère

Collège de M. de León, España

A. estatic, de P.M. Malzère

A. estatic, de P.M. Malzère

(Comité de P.M. de France-Canada International)

2 July 1976

XII-173

CERN - EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
The presence of channel 6 may appear to the data, and

\[
\mu = \frac{Z + d}{Z + d + 1} \times \frac{E + d - 1}{E + d} = \mu^* \quad \text{where} \quad \mu^* \end{array}
\]

The parameter \(\mu \) and \(\mu^* \) do not depend on the

\[
\left(\frac{Z^2}{Z^2 - \mu^*} \right)^2 = \frac{Z}{Z + \mu^*}
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\mu \) and \(\mu^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]

The parameter \(\Delta \) and \(\Delta^* \) do not depend on the

\[
\Delta^* = \Delta + 1 - \mu^* = \Delta^*
\]
<table>
<thead>
<tr>
<th>f</th>
<th>0.00 ± 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>0.00 ± 0.01</td>
</tr>
</tbody>
</table>

Table 2

For column (2), $f = 0.00 ± 0.02$, $g = 0.00 ± 0.03$, and $h = 0.00 ± 0.04$.

For column (3), $f = 0.00 ± 0.05$, $g = 0.00 ± 0.06$, and $h = 0.00 ± 0.07$.

- The results for column (2) are consistent with those for column (3).
- The values of the parameters were adjusted as follows: $a = 0.00 ± 0.02$, $b = 0.00 ± 0.03$, and $c = 0.00 ± 0.04$.
- The results for column (3) are consistent with those for column (2).
- The values of the parameters were adjusted as follows: $a = 0.00 ± 0.05$, $b = 0.00 ± 0.06$, and $c = 0.00 ± 0.07$.

Conclusions

- The results for columns (2) and (3) are consistent with those for columns (2) and (3).
- The values of the parameters were adjusted as follows: $a = 0.00 ± 0.02$, $b = 0.00 ± 0.03$, and $c = 0.00 ± 0.04$.
Fig. 1 The distributions of (a) p, (b) q and (c) Δy, for $K^+\pi^-\pi^0\pi^0$ in the final state $K^+\pi^-\pi^0\pi^0$. The curves are explained in the text.

Fig. 2 The distributions of (a) p, (b) q and (c) Δy, for $K^+\pi^-\pi^0\pi^0$ in the final state $K^+\pi^-\pi^0\pi^0$. The curves are explained in this text.