ON CHIRAL REALIZATIONS OF CONFINING THEORIES

D. Amati
CERN -- Geneva

and

E. Rabinovici
Racah Physics Department, Hebrew University
Jerusalem, Israel

ABSTRACT

It is argued that chirality is not necessarily broken in SU(N) colour theories with a chiral flavour symmetry. In this case, massless fermion bound states contribute to anomaly equations, and loop expansions in a 1/N approach are invalid. As a hint to understanding which option is realized by the theory, we investigate it in two dimensions for very small quark masses. The light spectrum shows a rich structure not obtained in a 1/N expansion. Light flavoured baryons and mesons indicate a partial realization of the chiral symmetry.
Several arguments have been recently provided in order to infer that a chiral
confining theory should undergo a spontaneous symmetry breaking, thus generating
Goldstone bosons. An intuitive justification\(^1\) is that a quark, when approaching
the confining region (bag) should change its velocity thus behaving as having
an effective mass. More precise arguments have been provided on the basis of
lattice calculations\(^1\) and, more recently, Coleman and Witten\(^2\) have argued that
chiral symmetry breaking of a SU(N) colour with a global chiral SU(n) x SU(n)
flavour symmetry is predicted by a 1/N expansion. In the loop expansion, the
strong U(1) anomaly was also shown to imply chiral breaking\(^3\).

The crucial point of this last approach is that due to anomalies, triangular
Green functions \(\Gamma_{\mu\nu\rho}(k^2)\) must have a 1/k\(^2\) pole. However, in the planar quark
loop expansion generated by 1/N approach, the quantities in question are
described, at leading order by a single quark loop as that of Fig. 1. It is then
apparent that the only possibility of displaying a 1/k\(^2\) singularity is to
generate a massless scalar bound state composed by \(q\bar{q}\) and an arbitrary number
of gluons. This would be the Goldstone massless boson, a sign of the spontaneous
symmetry breaking.

Other ways of saturating anomalies exist in principle. Indeed, it is well
known that the 1/k\(^2\) pole needed to satisfy the anomaly requirement can also
be provided by massless fermions\(^4\) which, due to confinement, should be colour
singlets (let us call them baryons).

In this note we point out that chiral realizations may indeed be possible
even for large N. We shall first argue that the loop expansion used in Ref. 2)
is valid only under the assumption that the chirality is completely broken. This
means that if the whole chiral group (or a chiral subgroup of it) is actually
realized, the loop expansion is unwarranted and massless fermions would contribute
to the saturation of anomaly equations. This agrees with conclusions obtained
independently by Veneziano\(^5\) with an effective Lagrangian approach to anomalies.

Witten has shown\(^6\) that baryons can be accommodated in a 1/N approach,
but of course not in a loop expansion. In a non-chiral realization, these baryons
would have a large mass (\(\propto N\) where \(m\) is the quark mass) and their presence
would not be expected to spoil the loop expansion that approximately described
the underlying dynamics. However, this is not the case if quarks remain mass-
less (\(m = 0\)), as demanded by a chiral realization. The baryon contribution
to the anomaly would look as in Fig. 2 which is a terribly non-planar diagram
not necessarily depressed by 1/N factors\(^8\). Massless baryons are therefore
evidence of chiral realizations, while massless scalars (Goldstones) are a sign
of chiral breaking. The presence of both indicates a partial chiral realization.

\(^1\)Arguments\(^5\) that baryon pairs couple to currents like \(\exp - cN\) are also ques-
tionable for \(m = 0\).
Anomalies imply massless particles and, in order to be saturated, provide stringent conditions on them. 't Hooft\footnote{We shall not discuss in this note the anomaly structure in two dimensions and how the states we shall identify will contribute to their saturation. This is currently under study in collaboration with S. Blitzur and Y. Frishman.} first discussed these conditions for a purely chiral saturation. The recognition and classification of different possible solutions is a group theoretical problem. Which of them is actually realized is instead a purely dynamical question, directly related to which are the massless (colourless) states in the spectrum of the confining theory. This is, unfortunately, a difficult question to answer.

In order to have an insight, we shall investigate the theory in two dimensions where confinement is guaranteed and where the light spectrum can be detected\footnote{We shall not discuss in this note the anomaly structure in two dimensions and how the states we shall identify will contribute to their saturation. This is currently under study in collaboration with S. Blitzur and Y. Frishman.}.

Let us immediately recognize that at first sight it seems odd to look for massless bound states or Goldstones in two-dimensional models where we know they are forbidden\footnote{We shall not discuss in this note the anomaly structure in two dimensions and how the states we shall identify will contribute to their saturation. This is currently under study in collaboration with S. Blitzur and Y. Frishman.}. This difficulty is easy to circumvent. We shall introduce an ad hoc small quark (current) mass m_0 and look for the spectrum for $Nc_0/g << 1$ (the charge g has dimension of a mass in two dimensions). These are the states that in four dimensions would be expected to become massless in the chiral $m_0 \to 0$ limit. The pathology of two dimensions is reflected by the fact that for $m_0 \to 0$ these states usually decouple and disappear, thereby respecting the Coleman dictate. As we shall see, we shall find light composite fermions which, as we said before, indicate an active chiral protection.

Let us consider a gauge $SU(N_c)$ theory (Latin indices) with a flavour $U(N_f)$ symmetry (Greek indices) in two dimensions (QCD$_2$). In order to analyse its light spectrum in the strong coupling limit $N_c(m_0/g) << 1$, it is convenient to work in a gauge first proposed by Baluni\footnote{We shall not discuss in this note the anomaly structure in two dimensions and how the states we shall identify will contribute to their saturation. This is currently under study in collaboration with S. Blitzur and Y. Frishman.} and subsequently used by Steinhardt\footnote{We shall not discuss in this note the anomaly structure in two dimensions and how the states we shall identify will contribute to their saturation. This is currently under study in collaboration with S. Blitzur and Y. Frishman.}. Our treatment closely follows that of Ref. 10) and, therefore, we only sketch a few essential steps. The gauge is defined by

$$E_k^i = 0 \quad i \neq k$$
$$A_i^i = 0$$

The bosonization of the theory is performed by defining

$$\bar{\Pi} : \bar{q} \Gamma^i \phi_i = \bar{\phi}_i \Gamma^i q_i$$
$$\bar{\Pi} : \bar{q} \Gamma^i \chi_i = \chi_i$$
Then, if m is the bare quark mass and g is the electric charge, the Hamiltonian reads

$$
\mathcal{H} = N_c \sum_{\alpha,i} \left[\frac{1}{2} \bar{\phi}_i^\alpha \gamma^2 \phi_i^\alpha + \frac{i}{2} \left(\partial_\tau \phi_i^\alpha \right)^2 + 2 m_\alpha \left(1 - \cos 2 \mu_i \phi_i^\alpha \right) \right] +
\frac{g^2}{8 \pi N_c} \sum_{i,j} \left[\frac{\Sigma}{\alpha} \left(\phi_{\alpha i}^\alpha - \phi_{\alpha j}^\alpha \right) \right]^2 + \sum_{i,j} F \left(\Sigma_{\alpha} \phi_{\alpha i}^\alpha - \phi_{\alpha j}^\alpha \right) \right]
$$

(3)

where μ is an arbitrary mass scale used to normal order and F is a term involving the fields ϕ in the combination indicated explicitly.

The Hamiltonian of Eq. (3) has a $S_{N_c} \times S_{N_f}$ discrete symmetry (S_N being the permutation group of N elements). The first is not surprising due to the fact that the conditions (1) do not completely fix the gauge, leaving a global S_{N_c} and a local $(U(1))^N_{c-1}$ symmetry. The S_{N_c} symmetry seems more surprising due to the fact that the original (QCD) theory had a continuous $U(N_f)$ global invariance. The $U(N_f)$ symmetry shall indeed appear as a secret symmetry which will manifest itself in the bound state spectrum.

It is convenient to introduce a basis that singles out flavour and colour scalars

$$
\chi = (N_c N_f)^{-1/2} \sum_{\alpha,i} \phi_i^\alpha , \quad \chi^\alpha = (N_c)^{-1/2} \sum_{\alpha,i} \phi_i^\alpha \tau^\alpha \\
\chi_i = (N_f)^{-1/2} \sum_{\beta,j} \phi_{\beta j}^i , \quad \chi_i^\alpha = \sum_{\beta,j} \phi_{\beta j}^i \tau^{\beta \alpha}
$$

(4)

where $\lambda^{(\tau)}$ are the $N_c - 1$ ($N_f - 1$) diagonal matrices representing the commuting set of generators of $SU(N_c)$ ($SU(N_f)$). The term proportional to g^2 in Eq. (3) can then be written as $g^2/8\pi N_c \chi_i^2$ implying that the χ_i^2 fields have masses proportional to g^2. As discussed in Ref. 10, the decoupling of these heavy fields is easy. Their only contributions not depressed by powers of m^2/g^2 are loops in which χ_i^2 are emitted and reabsorbed by a renormal ordering. This means that the $N_c - 1$ fields χ_i^2 can be set to zero provided the mass (which appears now as the only parameter which gives the mass scale and by which fields are normal ordered) is given by
\[
\mathbf{m} = \frac{g}{\sqrt{\pi}} \left(\frac{m_c}{g} \right)^{\frac{N_c N_f}{N_c(N_f-1)-1}}
\]

(5)

We also notice that the \(F \) term in Eq. (3) vanishes when \(\chi \) are set to zero. Equation (5) implies that \(m/g \to 0 \) as \(m_c/g \to 0 \) so that \(m \) is the only small mass parameter of the theory. In order to analyse the light spectrum, we will rewrite \(H \) in terms of the \(N_c(N_f-1)+1 \) fields \(\chi \), \(\chi^+ \), and \(\chi^0 \) that describe low-lying excitation.

Let us analyse the \(N_f = 2 \) case, the extension to the general case being a simple matter. A convenient basis is \(\chi \) and \(\chi^+ = (\phi_{01} - \phi_{12})/\sqrt{2} \) (\(i = 1, \ldots, N_c \)) in terms of which \(H \) is written as

\[
H = N_m \sum \frac{1}{2} \pi^2 + \frac{g}{2} \sum \sum_i \left(i \right) \left(\xi \frac{\partial \chi}{\partial x} \right)^2 + \frac{1}{2} \left(\xi \frac{\partial \chi}{\partial x} \right)^2 + \frac{1}{2} \left(\xi \frac{\partial \chi}{\partial x} \right)^2 +
\]

\[
N_m \left[\left(\xi \frac{\partial \chi}{\partial x} \right)^2 \right] + m^2 \left[\sum \frac{1}{2} \sum_{i=1}^{N_c} \frac{1}{2} \sum_{j=1}^{N_c} \cos \left(\frac{2\pi j}{N_c} \chi \right) \right]
\]

(6)

which describes a generalized sine-Gordon system which we shall analyse with semi-classical methods. The mass term, which breaks chiral symmetry leaves to the Hamiltonian of Eq. (6) a discrete chiral symmetry corresponding to \(\phi_{01} \rightarrow \phi_{01} \pm \pi \sqrt{m} \) which allows a classification of different vacua. This discrete symmetry is nevertheless also broken by solitons that interpolate the different vacua at space co-ordinate \(\pm \infty \) and \(\pm \infty \). Excitations will be classified by these different jumps (topological numbers) that are directly related to baryon numbers and the third component of the isospin. Indeed, using Eq. (2) the quark charge \(B \) and \(I_3 \) are given by

\[
B = \int_{-\infty}^{+\infty} dx \sum_{i} \phi_{0i} \partial_0 q_{ai} = \frac{1}{V \pi} \int_{-\infty}^{+\infty} dx \sum_{i} \partial_0 \phi_{0i} = \frac{V^2 N_c}{\pi} \Delta \chi
\]

\[
I_3 = \int_{-\infty}^{+\infty} dx \sum_{i} \phi_{0i} \partial_0 \chi_{ai} = \frac{1}{V \pi} \int_{-\infty}^{+\infty} dx \sum_{i} \partial_0 \chi_{0i} = \frac{1}{V \pi} \sum_{i} \Delta \chi_{0i}
\]

(7)
where
\[
\Delta \chi \equiv \chi(xz+\omega) - \chi(xz-\omega)
\]

We recall that the mass (energy) of a soliton in a sine-Gordon system
\[
H = \frac{1}{4 \beta^2} \left(\partial_x \phi \right)^2 + \frac{1}{4} \left(\partial_x \phi \right)^2 + \alpha \left(1 - \cos \beta \phi \right)
\]

is given by\(^{11}\)
\[
\mathcal{M}_s = \frac{8 \sqrt{2} \alpha}{\beta}
\]

Let us now start discussing the mesonic ($\Delta \chi = 0$) spectrum. Solitons can be excited in every χ_i^-. The lowest excitations will correspond to a single χ_i^- jumping (by $\pm 2\pi$) leaving all other fields unexcited. From (3) and (9) we evaluate its masses to be $M = 2M_0$, where for later convenience we have defined
\[
M_0 \equiv 4 \sqrt{\frac{\alpha}{\beta}} m
\]

They correspond to mesons ($B = 0$) with $I_3 = \pm 1$. We notice that we should count these states as a single meson for each I_3. Indeed, the fact that each of the χ_i^- ($i = 1, \ldots, N_c$) can jump, is a reflection of the S_{N_c} residual symmetry left by the gauge conditions (1) which must, of course, be disposed of.

The degeneracy of $I_3 = 1$ and $I_3 = -1$ states (soliton and antisoliton) are expected by the discrete S_2 flavour symmetry. As pointed out by Coleman\(^{11}\), the $I_3 = 0$ member of the $I = 1$ triplet emerges from the breather modes as expected from the hidden SU(2) flavour symmetry. Indeed, the soliton-antisoliton states of the sine-Gordon system (8) have masses\(^{12}\)
\[
M_n = 2M_s \frac{2 \pi n}{\beta^2} \frac{1}{1 - \beta^2 / \beta^2}, \quad n = 1, 2, \ldots < \frac{8 \pi}{\beta^2} - 1
\]

where M_s is the soliton mass (9). For χ_i^- solitons in (6), $E_s = 2M_0$, $\beta = \sqrt{2 \alpha}$ and therefore $n = 1, 2$. These are therefore mesons with $I_3 = 0$ and masses
\[
M_1 = 2M_0, \quad M_2 = 2 \sqrt{2} M_0
\]
The first breather therefore completes the $I = 1$ triplet while the second, with slightly higher mass, represents an $I = 0$ meson.

Higher mass states are obtained when two fields χ^+_1 jump or when one jumps and one breathes or two breath. The lowest form an $I = 2$ multiplet and a degenerate singlet of masses $M = 4M_0$.

Another family of low-lying mesons is provided by breathers of χ. They have of course $I = 0$ if no χ^-_1 soliton is excited. Their masses will be again given by Eq. (11), but now

$$\hat{M}_n = 2N_c M_0 \beta \sin \frac{n\pi}{4N_c - 2}$$

so that calling β_n^0 the masses of these χ breathers

$$\hat{M}_n = 4 M_0 N_c \sin \frac{n\pi}{4N_c - 1}$$

For large N_c the lower χ breather has a mass

$$\hat{M}_1 \sim \frac{\pi}{2} M_0$$

which is even lower than the $I = 1$ meson discussed before.

Let us now turn to the baryon spectrum. We notice that the Hamiltonian of Eq. (6) allows a correlated soliton set for

$$\Delta \chi^+ = \pm \sqrt{\pi N_c} \hat{\psi}_i, \quad \Delta \chi^-_i = \pm \sqrt{\pi} \hat{\psi}_i \quad \text{all } i$$

They all have quark numbers $B = \pm N_c$ and are therefore bona fide baryons and antibaryons. We find $N_c + 1$ distinct combinations of χ^+_1 solitons and anti-solitons forming $I = N_c/2$ isospin representations for the baryon and antibaryon. Their mass can be estimated to be $M_B = M_0 N_c$ by substituting $\chi^+_1 = i\chi/\sqrt{N_c}$ in Eq. (6) thus obtaining an effective Hamiltonian as that of Eq. (8).

A dibaryon with $I = 0$ and mass $2M_0 N_c = 2M_B$ will be obtained for a χ soliton. Likewise, higher excitations including nuclei, can easily be obtained.

We now notice that the $I = 0$ mesons, breathers of χ we found before, can be thought of as soliton-antisoliton (χ soliton of course) bound states. This led Steinhardt10 to call them baryonium, indeed bound states of an $I = 0$.
dibaryon and its antiparticle. This identification is perhaps misleading. It is
nevertheless amusing that baryoniums seem to stem from $U(1)$ anomalies in
chiral realizations\(^5\) by playing the role that the η had in the broken case.

To summarize, for very small m, i.e., $(N_c n/m g) << 1$ we found a plethora of
very light states, including mesons and baryons with a spectrum quite different from
the one obtained in the $1/N_c$ expansion\(^\dagger\)}. This is not a contradiction, due
to the fact that the $1/N_c$ expansion is supposedly valid in the weak coupling
limit, i.e., $g^2/m^2 \sim 1/N_c << 1$.

Another property, worth mentioning is the striking difference between the
$SU(N_c)$ and the $U(N_c)$ case. For $U(N_c)$, there appears in the bosonized
Hamiltonian of Eq. (3) an extra term

$$\frac{g^2}{8\pi N_c} \left(\sum_{a, i} \phi_i^a \phi_i^a \right) = \frac{g^2}{8\pi} N_c \chi^2$$

This means that the χ field receives a high mass and therefore its excitations
would not contribute to the light spectrum. This results in the elimination from
the light spectrum of all baryons as well as mesons we could have identified
with baryoniums. This follows from the fact that the $U(1)$ charge in the de-
composition $U(N_c) = U(1) \times SU(N_c)$ is confined in two dimensions \(^8\). Thus the
$SU(N_c)$ singlet and $U(1)$ non-singlet $\xi, \ldots, \xi_{N_c} \sigma_1 \sigma_2 \ldots \sigma_{N_c}$ is confined in
two dimensions.

We were also able to witness the pathology of the two-dimensional theory
for $m = 0$. Indeed m controls a sine-Gordon type interaction and its non-
zeroness allows soliton-like solutions and therefore a topological number that
disappears for $m = 0$.

We recall that although Goldstone bosons are now allowed in two dimensions,
chirally bleached fermions can get a mass mimicking as much as possible in two
dimensions dynamical chiral symmetry breaking. Witten\(^\dagger\) has shown that this is
indeed the case for the massless $SU(n)$ Thirring model. The baryons in (QCD)_2 do
not choose this option, they receive masses of the order of the current quark
masses. This is the signature of a chiral protection we were looking for.

We are grateful to M. Chanowitz, S. Elitzur, Y. Frishman, H. Harari,
G. Veneziano and M. Virasoro for enlightening discussions. This work was sup-
ported in part by the Israel Commission of basic research and the United States-
Israel Binational Foundation.

\(^\dagger\) In four dimensions this could happen if $U(1)$ emerges as a subgroup of a
compact group.
REFERENCES

1) A. Casher, Phys. Lett. B83 (1979) 395;
 J.M. Blairon, R. Brout, F. Englert and J. Greensite, Bruxelles Univ. preprint (1980);

7) G. 't Hooft, in Proceedings of the 1979 Cargèse School, see also

11) S. Coleman, Erice Lecture notes (1975).

