Precise tests of low energy QCD from K_{e4} decay properties

The NA48/2 Collaboration

Abstract

We report results from the analysis of the $K^\pm \rightarrow \pi^\pm \pi^\pm e^\pm \nu$ (K_{e4}) decay by the NA48/2 collaboration at the CERN SPS, based on the total statistics of 1.13 million decays collected in 2003 – 2004. The hadronic form factors in the S- and P-wave and their variation with energy are obtained. The phase difference between the S- and P-wave states of the $\pi\pi$ system is accurately measured and allows a precise determination of a_0^0 and a_2^0, the I=0 and I=2 S-wave $\pi\pi$ scattering lengths: $a_0^0 = 0.2220 \pm 0.0128_{\text{stat}} \pm 0.0050_{\text{syst}} \pm 0.0037_{\text{th}}, a_2^0 = -0.0432 \pm 0.0086_{\text{stat}} \pm 0.0034_{\text{syst}} \pm 0.0028_{\text{th}}$. Combination of this result with the other NA48/2 measurement obtained in the study of $K^\pm \rightarrow \pi^0\pi^0\pi^\pm$ decays brings an improved determination of a_0^0 and the first precise experimental measurement of a_2^0, providing a stringent test of Chiral Perturbation Theory predictions and lattice QCD calculations. Using constraints based on analyticity and chiral symmetry, even more precise values are obtained: $a_0^0 = 0.2196 \pm 0.0028_{\text{stat}} \pm 0.0020_{\text{syst}}$ and $a_2^0 = -0.0444 \pm 0.0007_{\text{stat}} \pm 0.0005_{\text{syst}} \pm 0.0008_{\text{ChPT}}$.

Submitted for publication in European Physical Journal C

1See next pages for the list of authors

Copyright CERN for the benefit of the Collaboration
contact: brigitte.bloch-devaux@cern.ch
The NA48/2 Collaboration

J.R. Batley, G. Kalmus, C. Lazzeroni, D.J. Munday, M.W. Slater, S.A. Wotton
Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK

CERN, CH-1211 Genève 23, Switzerland

Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

E. Monnier, E. Swallow, R. Winston
The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60126, USA

P. Rubin, A. Walker
Department of Physics and Astronomy, University of Edinburgh, JCMB King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK

Dipartimento di Fisica dell’Università e Sezione dell’INFN di Ferrara, I-44100 Ferrara, Italy

A. Bizzeti, M. Lenti, M. Veltri
Sezione dell’INFN di Firenze, I-50125 Firenze, Italy

M. Calvetti, E. Celeghini, E. Iacopini, G. Ruggiero
Dipartimento di Fisica dell'Università e Sezione dell’INFN di Firenze, I-50125 Firenze, Italy

Institut für Physik, Universität Mainz, D-55099 Mainz, Germany

Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA

P. Cenci, M. Pepe, M.C. Petrucci
Sezione dell’INFN di Perugia, I-06100 Perugia, Italy

G. Anzivino, E. Imbergamo, A. Nappi, M. Piccini, M. Raggi, M. Valdata-Nappi
Dipartimento di Fisica dell’Università e Sezione dell’INFN di Perugia, I-06100 Perugia, Italy

C. Cerri, R. Fantechi
Sezione dell’INFN di Pisa, I-56100 Pisa, Italy

G. Collazuol, L. DiLella, G. Lamanna, I. Mannelli, A. Michetti
Scuola Normale Superiore e Sezione dell’INFN di Pisa, I-56100 Pisa, Italy

F. Costantini, N. Doble, L. Fiorini, S. Giudici, G. Pierazzini, M. Sozzi, S. Venditti
Dipartimento di Fisica dell’Università e Sezione dell’INFN di Pisa, I-56100 Pisa, Italy

DSM/IRFU – CEA Saclay, F-91191 Gif-sur-Yvette, France
1 Introduction

At high energy, strong interactions between elementary particles are described by Quantum Chromo Dynamics (QCD) whose Lagrangian can be expanded in power series of the strong coupling constant. At low energy (below ~ 1 GeV) the strong coupling becomes large and the perturbative description is no longer possible. Another approach, Chiral Perturbation Theory (ChPT), has been considered: it introduces an effective Lagrangian [1] where the elementary constituents are light pseudo-scalar mesons instead of quarks. The physical observables are then described by an expansion in terms of external momenta and light quark masses. At the cost of a number of free parameters (determined from experimental measurements), ChPT can quantitatively describe meson structure and form factors but can also compute hadronic contributions to some low energy observables like the $g - 2$ of the muon which is very precisely measured [2]. Testing the predictions of ChPT and its underlying assumptions is then of prime interest.

ChPT has been particularly powerful in describing $\pi\pi$ scattering at low energy and over the past 40 years, calculations at Leading Order (LO) and at the two subsequent Orders (NLO, NNLO) have converged towards very precise values of the underlying constants of the theory, the S-wave $\pi\pi$ scattering lengths in the isospin 0 and 2 states, denoted a_0^0 and a_2^0, respectively.

Experimental determinations of the scattering lengths have been pursued over more than four decades, but more recently, precise measurements have been obtained in several channels:

- The study of K_{e4} decays is of particular interest as it gives access to the final state interaction of two pions in absence of any other hadron. The asymmetry of the dilepton system with respect to the dipion system is related to the difference between the S- and P- wave $\pi\pi$ scattering phases for isospin states 0 and 1 ($\delta_0^0 - \delta_1^1$). Under the assumption of isospin symmetry, values of the scattering lengths a_0^0 and a_2^0 have been reported by NA48/2 [3] at the CERN SPS, based on a partial sample of 670 000 K^\pm decays collected in 2003, E865 [4] at the BNL AGS, based on 400 000 K^+ decays and S118 [5] (often referred to as Geneva-Saclay Collaboration) at the CERN PS, based on 30 000 K^+ decays. The results from the analysis of the full available statistics of NA48/2 (1.13 million decays) will be given here and discussed in detail.

- The study of K_{e4} decays has shown evidence for a cusp-like structure in the $M_{\pi^0\pi^0}$ distribution, explained by re-scattering effects in the $\pi\pi$ system below and above the $2m_{\pi^\pm}$ threshold. This has been published by NA48/2 for partial ($2.287 \cdot 10^7$ decays) [6] and total (6.031 \cdot 10^7 decays) [7] statistics. The combination of the independent NA48/2 final results from the two channels, K_{e4} and $K_{3\pi}$ cusp, will be reported here and compared to the currently most precise theoretical predictions.

- Another challenging approach is the formation of $\pi\pi$ atoms as studied by the DIRAC collaboration [8] at the CERN PS from 6 5000 observed $\pi^+\pi^-$ pairs. The lifetime measurement of such pionium atoms is directly related to the underlying charge-exchange scattering process $\pi^+\pi^- \to \pi^0\pi^0$. The result of a larger sample analysis is also expected.

Isospin symmetry breaking effects have been fully considered in the last two processes which would not occur otherwise. With the achieved experimental precision from K_{e4} decays, mass effects ($m_{\pi^+} \neq m_{\pi^0}, m_d \neq m_d$), neglected in previous studies, should be included when relating phase measurements to scattering length values. The impact of these effects on the low energy QCD stringent tests performed will also be discussed.

2 Beam and detector

A sketch of the beam geometry and detector layout is shown in Figure 1. The two simultaneous K^+ and K^- beams are produced by 400 GeV primary protons from the CERN SPS impinging on a 40 cm long beryllium target. Opposite charge particles, with a central momentum of 60 GeV/c
and a momentum band of $\pm 3.8\%$ (rms), are selected by two systems of dipole magnets (each forming an "achromat"), focusing quadrupoles, muon sweepers and collimators. At the entrance of the decay volume, a 114 m long evacuated vacuum tank, the beams contain $\sim 2.3 \times 10^6 K^+$ and $\sim 1.3 \times 10^6 K^-$ per pulse of about 4.5 s duration with a flux ratio K^+/K^- close to 1.8. The two beams are focused ~ 200 m downstream of the production target in front of the first spectrometer chamber [9]. The NA48 detector and its performances are described in full detail elsewhere [10]. The components used in the K_{e4} analysis are listed here:

- Charged particle momenta from K^{\pm} decays are measured in a magnetic spectrometer consisting of four drift chambers (DCH1 through DCH4) and a large aperture dipole magnet located between the second and third chamber. Each chamber consists of four staggered double planes of sense wires along the horizontal, vertical and $\pm 45^\circ$ directions. The spectrometer is located in a tank filled with 95% purity helium at atmospheric pressure and separated from the decay volume by a thin (0.0031 radiation length thick) Kevlar® window to reduce multiple scattering. The spectrometer magnet gives a transverse momentum kick of 120 MeV/c to charged particles in the horizontal plane. The momentum resolution of the spectrometer is $\sigma(p)/p = (1.02 \pm 0.044)\%$ (p in GeV/c).

- A hodoscope (HOD) consisting of two planes of scintillators segmented into horizontal and vertical strips is used to trigger the detector readout on charged track topologies. The hodoscope surface is logically subdivided into 16 non-overlapping square regions. Its time resolution is ~ 150 ps.

- A liquid-krypton calorimeter (LKr) measures the energy of electrons and photons. The transverse segmentation into 13248 2 cm \times 2 cm projective cells and the 27 radiation length thickness result in an energy resolution $\sigma(E)/E = (3.2/\sqrt{E} \oplus 9.0/E \oplus 0.42)\%$ (E in GeV) and a space resolution for transverse position of isolated showers $\sigma_x = \sigma_y = (0.42/\sqrt{E} \oplus 0.06)$ cm. This allows to separate electrons ($E/p \sim 1$) from pions ($E/p < 1$).

- The muon veto counters (MUV) consist of one horizontal and one vertical plane of plastic scintillator slabs read out by photo-multipliers and preceded each by 0.8 m thick iron absorbers. The MUV itself is also preceded by the hadron calorimeter (HAC, not used in this analysis) with a total thickness of 1.2 m of iron.

- A beam spectrometer (KABES), based on Micromegas amplification in a TPC [11], allows to measure the incident kaon momentum with a relative precision better than 1%.

- A two-level trigger logic selects and flags events. At the first level (L1), charged track topologies are selected by requiring coincidences of hits in the two HOD planes in at least two of the 16 square regions. At the second level (L2), a farm of asynchronous microprocessors performs a fast reconstruction of tracks and runs a decision-taking algorithm. Three complementary configurations are used: a) 2VTX, selecting events with at least three tracks forming consistent two-track vertices with the beam line; b) 1VTX, selecting events with at least two tracks forming a vertex consistent with a beam particle decay; and c) 1TRKP, which selects tracks originating from the beam line and kinematically inconsistent with $K^{\pm} \rightarrow \pi^{\pm}\pi^0$ decay. This trigger logic ensures a very high trigger efficiency for such topologies.

3 Event selection

Events from the whole data sample recorded in 2003 and 2004 were selected using criteria similar to those applied to the 2003 sample [3]. These criteria are recalled here for completeness, and complemented by the additional requirements applied in the final analysis.
Figure 1: Sketch of the NA48/2 beam line, decay volume and detectors. Note the different vertical scales in the left and right parts of the figure

3.1 Signal topology selection

The signal topology is characterized by three charged tracks consistent with a common decay vertex, with two opposite charge pions and one electron or positron. In addition, missing energy and transverse momentum should be allowed for the undetected neutrino.

In the 2004 run, the LKr calorimeter information was only recorded for a fraction of the 2VTX and 1VTX topologies, while events flagged as ITRKP were fully recorded. An additional downscaling was applied off-line to the latter trigger configuration to ensure similar trigger conditions throughout the two years.

The whole data sample was then selected for three well reconstructed charged tracks. The timings of the three tracks, as measured from the DCH information, must agree within 6 ns, while the timings of the corresponding hodoscope signals must agree within 2 ns. The three-track reconstructed vertex position had to lie within a 5 cm radius transverse to the beam line and within 2 to 95 meters downstream of the final collimator. Two opposite sign pions \((E/p < 0.8)\) and one electron or positron \((0.9 < E/p < 1.1)\) were required. A minimum momentum requirement of 3 GeV/c (5 GeV/c) for the electron (pion) was applied while the maximum momentum sum was set at 70 GeV/c. The distance between any two tracks at DCH1 was required to be larger than 2 cm and the distance between any track and the beam line larger than 12 cm. The track impact at the LKr front face was required to fall within the active fiducial region and away from any dead cell by at least 2 cm to ensure reliable energy measurement. The track-to-track distance at the LKr front face had to be larger than 20 cm to prevent shower overlaps. No more than 3 GeV energy deposits in the calorimeter, not associated to tracks but in-time with the considered track combination, were allowed to eliminate events possibly biased by emission of hard photon(s). No track-associated signal in the MUV detector was allowed to reject possible \(\pi \rightarrow \mu \nu\) decays in flight. The reconstructed three-track invariant mass \((\text{assigning the pion mass to each track})\) and the transverse momentum \(p_t\) relative to the beam axis had to be outside an ellipse centered on the kaon mass and zero \(p_t\), with semi-axes 20 MeV/c^2 and 35 MeV/c, respectively, thus requiring a non-zero \(p_t\) value for the undetected neutrino and excluding \(K^\pm \rightarrow \pi^\pm \pi^- \pi^\pm\) three-body decays.

The reconstruction of the kaon momentum under the assumption of a four-body decay with an undetected massless neutrino provides a more precise estimate than the 60 GeV/c average beam momentum. Imposing energy-momentum conservation in the decay and fixing the kaon
mass and the beam direction to their nominal value, a quadratic equation in p_K, the kaon momentum, is obtained. If solutions exist in the range between 50 and 70 GeV/c, the event is kept and the solution closer to 60 GeV/c is assigned to p_K.

3.2 Background rejection

There are two main background sources: $K^+ \rightarrow \pi^+ \pi^- \pi^\pm$ decays with subsequent $\pi \rightarrow e\nu$ decay or a pion mis-identified as an electron; and $K^\pm \rightarrow \pi^\pm \pi^0(\pi^0)$ decays with subsequent Dalitz decay of a $\pi^0 (\pi_D^0 \rightarrow e^+e^-\gamma)$ with an electron mis-identified as a pion and photon(s) undetected. Additional selection criteria are applied against background events: the elliptic cut in the plane (M_3, p_t) rejects $K^+ \rightarrow \pi^+ \pi^- \pi^\pm$ decays with one pion mis-identified as an electron but no missing mass in the $K_{3\pi}$ hypothesis and low p_t value. By varying the ellipse semi-axes one can change the amount of accepted contamination. Requiring the square invariant mass M_X^2 in the decay $K^\pm \rightarrow \pi^\pm X$ to be larger than 0.04 (GeV/c2)2 further rejects $K^\pm \rightarrow \pi^\pm \pi^0$ decays. An invariant mass of the e^+e^- system (assigning an electron mass to the opposite charge pion) larger than 0.03 GeV/c2 ensures rejection of converted photons and of some multi-π^0 events. Additional rejection against pions mis-identified as electrons is achieved by using a dedicated linear discriminant variable (LDA) based on shower properties (E/p, radial shower width and energy weighted track-cluster distance). The training of this variable has been performed on pion tracks from well reconstructed $K_{3\pi}$ events having $E/p > 0.9$, and electron tracks from K_{e3} ($K^\pm \rightarrow \pi^0 e^\pm\nu$) decays selected on the basis of kinematics only (missing mass of the $(K^\pm - \pi^0 - e^\pm)$ system compatible with the neutrino mass). It provides a high, almost momentum independent, efficiency for electron tracks and additional rejection of pion tracks. The precise rejection level can be adjusted according to the discriminant variable value. To ensure a low level of contamination, the kaon momentum, reconstructed under the four-body assumption, was required to be within the range of 54 to 66 GeV/c. This momentum cut removes $\sim 40\%$ of the remaining background along with a $\sim 2\%$ loss of signal events (illustrated in section 5).

The background contamination to signal “right sign” (RS) events $(\pi^+\pi^- e^\pm\nu)$ is estimated from the observed “wrong sign” (WS) events $(\pi^\mp\pi^\pm e^\mp\nu)$, which, assuming the validity of the $\Delta S = \Delta Q$ rule, can only be background. Such events are selected with the same criteria as the signal events apart from the requirement of two opposite sign pions which is changed to two same sign pions. The background contribution to RS signal events has the same magnitude as that measured from WS events if originating from $K^\pm \rightarrow \pi^\pm \pi^0(\pi^0)$ decays but has to be multiplied by a factor of 2 if originating from $K_{3\pi}$ decays because of the two equal charge pions. This factor has been cross-checked using Monte Carlo simulated events from the various background topologies.

A total of 1 130 703 K_{e4} candidates (726 367 K^+ and 404 336 K^-) were selected from a sample of $\sim 2.5 \times 10^{10}$ triggers recorded in 2003-2004. The subtracted background was estimated to $2 \times 3 386$ (2 \times 109 for K^+ and 2 \times 1 277 for K^-) events according to twice the observed numbers of WS events. The $\sim 0.6\%$ relative background level was found to be constant throughout the two-year data taking.

4 Theoretical formulation

4.1 Kinematics

The decay $K^\pm \rightarrow \pi^\pm \pi^- e^\pm\nu$ is conveniently described using three different rest frames: the K^\pm rest frame, the dipion rest frame and the dilepton rest frame. The kinematics is then fully described by the five Cabibbo-Maksymowicz variables [12] as shown in the sketch of Figure 2:
- $S_\pi = M_{\pi\pi}^2$, the square of the dipion invariant mass,
- $S_e = M_{ee}^2$, the square of the dilepton invariant mass,
- θ_π, the angle of the π^\pm in the dipion rest frame with respect to the flight direction of the dipion in the K^\pm rest frame,
- θ_e, the angle of the e^\pm in the dilepton rest frame with respect to the flight direction of the dilepton in the K^\pm rest frame,
- ϕ, the angle between the dipion and dilepton rest frames.

Figure 2: Topology of the charged $K^+e^-\nu$ decay showing the angle definitions.

4.2 Decay probability

We recall the expression of the decay amplitude which is the product of the weak current of the leptonic part and the $(V - A)$ current of the hadronic part:

$$G_w \frac{V_{us}^*}{\sqrt{2}} \bar{u}_\nu \gamma_\lambda (1 - \gamma_5) v_e \langle \pi^+\pi^-|V^\lambda - A^\lambda|K^+\rangle,$$

where

$$\langle \pi^+\pi^-|A^\lambda|K^+\rangle = -\frac{i}{m_K} (F(p_{\pi^+} + p_{\pi^-})^\lambda + G(p_{\pi^+} - p_{\pi^-})^\lambda + R(p_e + p_\mu)^\lambda)$$

and

$$\langle \pi^+\pi^-|V^\lambda|K^+\rangle = -\frac{H}{m_K^2} e^{\lambda\mu\rho\sigma} (p_{\pi^+} + p_{\pi^-} + p_e + p_\mu)\epsilon_\mu (p_{\pi^+} + p_{\pi^-}) \rho (p_{\pi^+} - p_{\pi^-}) \sigma$$

In the above expressions, p is the four-momentum of each particle, F, G, R are three axial-vector and H one vector complex form factors with the convention $\epsilon^{0123} = 1$.

The decay probability summed over lepton spins can be written as:

$$d^5\Gamma = \frac{G_w^2 |V_{us}|^2}{2(4\pi)^3 m_K^5} \rho(S_\pi, S_e) I(S_\pi, S_e, \cos \theta_\pi, \cos \theta_e, \phi) dS_\pi dS_e d\cos \theta_\pi d\cos \theta_e d\phi,$$

where $\rho(S_\pi, S_e)$ is the phase space factor $X\sigma_\pi(1 - z_e)$, with

$$X = \frac{1}{2} \lambda^{1/2}(m_K^2, S_\pi, S_e), \quad \sigma_\pi = (1 - 4m_\pi^2/S_\pi)^{1/2}, \quad z_e = \frac{m_e^2}{S_e}, \quad \text{and} \quad \lambda(a, b, c) = a^2 + b^2 + c^2 - 2(ab + ac + bc).$$

The function I, using four combinations of F, G, R, H complex hadronic form factors ($F_i, i = 1, 4$), reads [13, 14, 15]:

$$I = 2(1 - z_e)(I_1 + I_2 \cos 2\theta_e + I_3 \sin^2 \theta_e \cdot \cos 2\phi + I_4 \sin 2\theta_e \cdot \cos \phi + I_5 \sin \theta_e \cdot \cos \phi + I_6 \cos \theta_e + I_7 \sin \theta_e \cdot \sin \phi + I_8 \sin 2\theta_e \cdot \sin \phi + I_9 \sin^2 \theta_e \cdot \sin 2\phi)$$
where
\[
I_1 = \frac{1}{4} \left((1 + z_e)|F_1|^2 + \frac{1}{2}(3 + z_e)(|F_2|^2 + |F_3|^2) \sin^2 \theta_\pi + 2z_e|F_4|^2 \right),
\]
\[
I_2 = -\frac{1}{4} (1 - z_e) \left(|F_1|^2 - \frac{1}{2}(|F_2|^2 + |F_3|^2) \sin^2 \theta_\pi \right),
\]
\[
I_3 = -\frac{1}{4} (1 - z_e) \left(|F_2|^2 - |F_3|^2 \right) \sin^2 \theta_\pi,
\]
\[
I_4 = \frac{1}{2} (1 - z_e) \text{Re}(F_1^* F_2) \sin \theta_\pi,
\]
\[
I_5 = -\left(\text{Re}(F_1^* F_3) + z_e \text{Re}(F_2^* F_3) \right) \sin \theta_\pi,
\]
\[
I_6 = -\left(\text{Re}(F_2^* F_3) \sin^2 \theta_\pi - z_e \text{Re}(F_1^* F_3) \right),
\]
\[
I_7 = -\left(\text{Im}(F_1^* F_2) + z_e \text{Im}(F_2^* F_3) \right) \sin \theta_\pi,
\]
\[
I_8 = \frac{1}{2} (1 - z_e) \text{Im}(F_1^* F_3) \sin \theta_\pi,
\]
\[
I_9 = -\frac{1}{4} (1 - z_e) \text{Im}(F_2^* F_3) \sin^2 \theta_\pi.
\]

In K_{e4} decays, the electron mass can be neglected ($z_e = 0$) and the terms $(1 \pm z_e)$ become unity. One should also note that the form factor F_4 is always multiplied by z_e and thus does not contribute to the full expression.

With this simplification, the complex hadronic form factors F_i reduce to:
\[
F_1 = m_K^2 (\gamma F + \alpha G \cos \theta_\pi), \quad F_2 = m_K^2 (\beta G), \quad F_3 = m_K^2 (\beta \gamma H),
\]
where one uses the three dimensionless complex form factors F, G (axial), H (vector), and three dimensionless combinations of the S_π and S_e invariants:
\[
\alpha = \sigma_\pi (m_K^2 - S_\pi - S_e)/2m_K^2, \quad \beta = \sigma_\pi (S_\pi S_e)^{1/2}/m_K^2, \quad \gamma = X/m_K^2,
\]
related by $\sigma_\pi \gamma = 2\sqrt{\alpha^2 - \beta^2}$.

If T-invariance holds, the Watson theorem [16] tells us that a partial-wave amplitude of definite angular momentum l and isospin I must have the phase of the corresponding $\pi \pi$ amplitude δ_l^I.

Developing further F_1, F_2, F_3 in a partial wave expansion with respect to the variable $\cos \theta_\pi$ using Legendre functions $P_l(\cos \theta_\pi)$ and their derivative $P'_l(\cos \theta_\pi)$, one can now express the form factors F, G, H using explicitly the modulus and phase of each complex contribution. A D-wave contribution would appear as a $\cos^2 \theta_\pi$ term for F and $\cos \theta_\pi$ terms for G, H with its own phase.

\[
F = F_\pi e^{i\delta_{l\pi}} + F_p e^{i\delta_{lp}} \cos \theta_\pi + F_d e^{i\delta_{ld}} \cos^2 \theta_\pi
\]
\[
G = G_p e^{i\delta_{gp}} + G_d e^{i\delta_{gd}} \cos \theta_\pi
\]
\[
H = H_p e^{i\delta_{hp}} + H_d e^{i\delta_{hd}} \cos \theta_\pi
\]

Limiting the expansion to S- and P-waves and considering a unique phase δ_p for all P-wave form factors in absence of CP violating weak phases, the function I is then expressed as the sum of 12 terms, each of them being the product of two factors, A_i, which depends only on the form factor magnitudes and one single phase $\delta (= \delta_s - \delta_p)$, and B_i which is function of the kinematical variables only (see Table 1):

\[
I = \sum_{i=1}^{12} A_i(F_s, F_p, G_p, H_p, \delta) \times B_i(S_\pi, S_e, \cos \theta_\pi, \cos \theta_e, \phi).
\]

Going from K^+ to K^- under CPT conservation, θ_e should be replaced by $\pi - \theta_e$, ϕ should be replaced by $\pi + \phi$ and H_p by $-H_p$ [17]. Under the assumption of CP conservation, this is equivalent to obtaining the ϕ distribution of K^- decays from the ϕ distribution of K^+ decays with the same H_p value by changing ϕ to $-\phi$. This property can be verified in the expressions given in Table 1.
5 Monte Carlo simulation

Signal events were generated in the kaon rest frame according to the decay matrix element as given in section 4.2 and with values of form factors as measured in [4, 5], and then boosted to the laboratory frame. The incident kaon trajectory and momentum were generated taking into account the time variations of the beam properties for each kaon charge, and the decay vertex position according to the exponential decay law. As a precise description of the acceptance and resolution in the five-dimensional space of the kinematic variables is necessary, a detailed GEANT3-based [18] Monte Carlo (MC) simulation was used, including full detector geometry and material implementation, DCH alignment and local inefficiencies. A large time-weighted MC production was achieved, providing an event sample about 25 times larger than the data and reproducing the observed ratio $(K^+/K^-) = 1.8$. The same reconstruction and selection codes as for data were used, except for the timing cuts. The LDA cut was applied to the simulated electron candidates as a momentum-dependent efficiency. This represents the optimal implementation of the cut effect as it avoids reliance on the details of the shower developments, including fluctuations and limited statistics of the simulation. Two independent codes were used for the decay matrix element according to the Pais-Treiman formulation, one with a smooth phase shift variation [19] and constant form factors, the other with a more elaborated phase shift variation following ChPT prediction [20, 21, 22] and form factors depending on invariant masses (as published in [4]). They were used in independent analyses of a subset of the data.

The quality of the simulation can be seen from the plots of Figure 3 where distributions of simulated variables in the laboratory frame are compared to data distributions. Not only acceptance but also resolutions are well described in the simulation. Residual discrepancies will be studied in section 7. Acceptances in the five-dimensional space are shown as two- and one-dimensional projections in Figure 4 emphasizing their correlations. The experimental resolutions, projected on each of the five variables, vary smoothly across each spectrum. They are respectively (the mean value corresponds to a mixture of K^\pm in the same ratio as in the data):

Table 1: Contributions to the K_{e4} decay probability from S- and P-wave terms in absence of CP violating weak phases.

<table>
<thead>
<tr>
<th>A_i</th>
<th>B_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>F^2_s</td>
<td>$\gamma^2 \sin^2 \theta_e$</td>
</tr>
<tr>
<td>F^2_p</td>
<td>$\gamma^2 \cos^2 \theta_e \sin^2 \theta_e$</td>
</tr>
<tr>
<td>G^2_p</td>
<td>$\alpha^2 \cos^2 \theta_e \sin^2 \theta_e$</td>
</tr>
<tr>
<td>H^2_p</td>
<td>$\beta^2 \gamma^2 \sin^2 \theta_e (1 - \sin^2 \theta_e \cos^2 \phi)$</td>
</tr>
<tr>
<td>$F_sF_p \cos \delta$</td>
<td>$2 \gamma \sin \theta_e (\beta \sin \theta_e \cos \theta_e \cos \phi + \alpha \cos \theta_e \sin \theta_e)$</td>
</tr>
<tr>
<td>$F_sG_p \cos \delta$</td>
<td>$2 \beta \gamma \sin \theta_e \sin \theta_e \sin \phi$</td>
</tr>
<tr>
<td>$F_sH_p \cos \delta$</td>
<td>$-2 \beta \gamma \sin \theta_e \sin \theta_e \cos \phi$</td>
</tr>
<tr>
<td>$F_sH_p \sin \delta$</td>
<td>$-2 \beta \gamma \sin \theta_e \cos \theta_e \cos \phi$</td>
</tr>
<tr>
<td>F_pH_p</td>
<td>$-2 \beta \gamma \sin \theta_e \cos \theta_e \sin \phi$</td>
</tr>
<tr>
<td>G_pH_p</td>
<td>$-2 \beta \gamma \sin \theta_e (\beta \sin \theta_e \cos \theta_e + \alpha \cos \theta_e \sin \theta_e)$</td>
</tr>
<tr>
<td>F_pG_p</td>
<td>$2 \gamma \cos \theta_e \sin \theta_e (\beta \sin \theta_e \cos \theta_e \cos \phi + \alpha \cos \theta_e \sin \theta_e)$</td>
</tr>
</tbody>
</table>
rms mean value variation across spectrum

\(\sigma(M_{\pi\pi}) \) 1.5 MeV/c² increasing from 0.5 to 2.5 MeV/c²,

\(\sigma(M_{\omega}) \) 9.6 MeV/c² decreasing from 13 to 6 MeV/c²,

\(\sigma(\cos\theta_\pi) \) 0.052 decreasing from 0.058 (\(\cos\theta_\pi = 0 \)) to 0.040 (\(\cos\theta_\pi = \pm 1 \)),

\(\sigma(\cos\theta_\omega) \) 0.052 increasing from 0.025 (\(\cos\theta_\omega = -1 \)) to 0.070 (\(\cos\theta_\omega = 1 \)),

\(\sigma(\phi) \) 307 mrad decreasing from 370 mrad (\(\phi = 0 \)) to 240 mrad (\(\phi = \pm \pi \)).

Figure 3: Distributions of (a) the reconstructed vertex longitudinal position; (b) the minimum track radius at DCH1; (c) the reconstructed K\(^\pm\) momentum; (d) the reconstructed electron momentum. Data (background subtracted) are shown as full circles with error bars, simulations as histograms and background (wrong sign events increased by a factor of 10 to be visible) as shaded areas. The inserts show the ratio of data to simulated distributions. The arrows on plot (c) show the reconstructed kaon momentum range selected in the final analysis. Errors shown are statistical only; residual discrepancies will be discussed in section 7 (Systematic uncertainties).
Figure 4: Distribution of the acceptance (in %) as obtained from the simulation in the five-dimensional space and projected onto the $(M_{e\nu}, \cos \theta_e)$, $(M_{\pi \pi}, \cos \theta_e)$ and $(M_{\pi \pi}, M_{e\nu})$ planes and along the five kinematical variables. The smooth acceptance variation along single kinematical variables results from contributions of very different acceptance regions in the five-dimensional space.
Radiative corrections were implemented in the simulation in two successive steps:

- first, virtual photon exchange between charged particles is described by the classical
 Coulomb attraction/repulsion between two opposite/same charge particles \((i,j = \pi^+, \pi^-, e^\pm)\)
 and applied as a weight to the \(K_\text{e4}\) decay probability according to the Gamow function:

\[
C(S_{ij}) = \prod_{i \neq j} \frac{\omega_{ij}}{e^{\omega_{ij}} - 1}
\]

with \(\omega_{ij} = 2\pi\alpha Q_iQ_j/\beta_{ij}\), where \(\alpha\) is the fine structure constant, \(Q_iQ_j = -1\) for opposite charge particles (+1 for same charge particles) and \(\beta_{ij}\) is the relative velocity (in unit of \(c\)) expressed as

\[
\beta_{ij} = \sqrt{1 - \frac{4m_i^2m_j^2}{(S_{ij} - m_i^2 - m_j^2)^2}}
\]

using the invariant mass \(S_{ij}\) of the \((ij)\) system. The largest effect comes from the attraction between the two pions at low relative velocity, which distorts the \(M_{\pi\pi}\) spectrum near threshold. The electron (positron) being always relativistic, its relative velocity is very close to 1 and the corresponding weight is a constant.

- second, real photons are generated by the program PHOTOS version 2.15 \[23\] interfaced to the simulation. Only 10% of the events have photons adding up to more than 1 GeV in the laboratory frame. Furthermore the event selection reduces the acceptance for events with energetic photons. For these events, the resulting effect is a bias of the measured \(M_{\text{e4}}\) and \(\theta_e\) variables as hard photon emission mostly affects the electron kinematics.

6 Analysis method

As an extension of the method proposed originally in \[13\], based on partially integrated distributions of the Cabibbo-Maksymovicz variables in an ideal detector, we have chosen to work in the five-dimensional space to take into account the precise knowledge of the experimental acceptance and resolution. The high statistics now available allows a definition of a grid of equal population boxes adapted to both detector acceptance and resolution, and to the form factor variations to be studied. There are of course many possible choices and we stick to the grid used in \[3\] for simplicity: the data sample is first distributed over ten \(M_{\pi\pi}\) slices to follow the variation of physical parameters along this variable; each sub-sample is then distributed over five \(M_{\text{e4}}\) equi-populated slices, then over five \(\cos \theta_e\) slices, five \(\cos \theta_e\) slices and twelve \(\phi\) slices to ensure that correlations in the plane \((\cos \theta_e, \phi)\) are precisely described. This procedure results in a total of 15 000 five-dimensional boxes \((N_{\text{box}})\) of unequal sizes and achieves equal populations of 48 data events per box in the \(K^+\) sample and 27 in the \(K^-\) sample, which are analyzed separately since the simultaneous \(K^\pm\) beam geometries are not identical. A dedicated estimator (suited to account for Poisson fluctuations of the small number of events per box and limited simulation statistics) is used in the minimization procedure (as in previous analyses \[3, 4, 5\]). It is defined as:

\[
T^2 = 2 \sum_{j=1}^{N_{\text{box}}} n_j \ln \left(\frac{n_j}{r_j} \left(1 - \frac{1}{m_j + 1} \right) \right) + (n_j + m_j + 1) \ln \left(\frac{1 + r_j/m_j}{1 + n_j/(m_j + 1)} \right),
\]

where \(n_j\) is the number of data events in box \(j\), \(m_j\) is the number of observed simulated events in the same box and \(r_j\) is the number of expected simulated events \(r_j = m_j \cdot N_{\text{data}}/N_{MC}^{fit} \cdot I(F, G, H, \delta)^{fit}/I(F, G, H, \delta)^{gen}\). The expression \(I\) is defined by Eq. 2 (section 4.2) and computed for each event using the generated values of the kinematic variables and the current values of the fitted parameters \((F, G, H, \delta)^{fit}\), while \(N_{MC}^{fit}\) is the corresponding total number of simulated events \(\sum_{j=1}^{N_{\text{box}}} m_j \cdot I(F, G, H, \delta)^{fit}/I(F, G, H, \delta)^{gen}\). This takes into
account resolutions in the five-dimensional space and is independent of the particular set of form factors \((F, G, H, \delta)_{\text{gen}}\) used at generation step provided that the simulated sample populated all regions of the five-dimensional space accessible to the data.

We note that the more “classical” Log-likelihood \(L\) and least squares \(\chi^2\) estimators

\[
L = \sum_{j=1}^{N_{\text{box}}} 2n_j \ln(n_j/r_j) + 2(r_j - n_j) \quad \text{for large values of } m_j,
\]

\[
\chi^2 = \sum_{j=1}^{N_{\text{box}}} \frac{(r_j - n_j)^2}{n_j} \frac{m_j}{m_j + n_j} \quad \text{for large values of } m_j \text{ and } n_j,
\]

are almost equivalent to \(T^2\) within the available statistics.

In this analysis, the branching fraction is not measured, so only relative form factors are accessible: \(F_p/F_s, G_p/F_s, H_p/F_s\) and the phase shift \(\delta\). Neglecting a possible \(M_{\text{ev}}\) dependence and without prior assumption on the shape of their variation with \(M_{\pi\pi}\), the form factors and phase shift are measured in independent \(M_{\pi\pi}\) bins. Fits are performed in the four-dimensional space, separately for the \(K^+\) and \(K^-\) samples but using the same \(M_{\pi\pi}\) bin definitions. The results are found consistent for both charge signs and then combined in each bin according to their statistical weight. Identical results are obtained by fitting simultaneously the two independent samples to a single set of form factors and phase in the same \(M_{\pi\pi}\) bins. The relative normalizations \((N_{\text{Data}}/N_{\text{MC}})^{\text{fit}}\) are proportional to \(F_s^2\) and are rescaled to have a value equal to unity at the \(\pi\pi\) threshold. Last, values of \(F_p/F_s, G_p/F_s, H_p/F_s\) are deconvoluted of the observed \(F_s\) variation in each bin and plotted against \(q^2 = (S_\pi/4m_\pi^2) - 1\) to investigate a possible further dependence. Potential variations with \(M_{\text{ev}}\) are then explored and quantified when found significant.

In a second stage of the analysis, the observed variations of the form factors and phase shift with \(M_{\pi\pi}\) and \(M_{\text{ev}}\) are used to determine other parameter values through specific models. Series expansions of the variables \(q^2 = (S_\pi/4m_\pi^2) - 1\) and \(S_\pi/4m_\pi^2\) will be used to quantify the form factor variations (section 8.1). More elaborated models related to the physical parameters \((a_0^0, a_0^2)\) will be used when studying the phase variation (section 8.2).

7 Systematic uncertainties

Two independent analyses were performed on a large fraction of the 2003 data sample. They were based on different event selection and reconstruction, different detector corrections and different binning and fitting procedures. Consistent results were obtained, ensuring the robustness of the analysis. The final analysis was performed on the full statistics recorded over two years and follows one of the two validated analyses.

The studies reported in [3] have been repeated and extended to the whole data sample. Several systematic errors were limited by the available statistics and are now reduced. With respect to the analysis described in [3], the additional cut on the reconstructed kaon momentum ensures a lower relative background contamination (WS/RS = 0.0030 instead of 0.0046) and helps decreasing the impact of background related systematics. For each investigated item, the analysis was repeated varying one condition at a time and a systematic uncertainty was quoted for each fitted parameter in each \(M_{\pi\pi}\) bin. A particular attention was given to possible bin-to-bin correlations, which are indeed observed in some cases.

- Fitting procedure: the number of boxes used in the fitting procedure was varied within a factor of 2, keeping, however, the same definition for the 10 \(M_{\pi\pi}\) bins. This last number was also extended to 12 and 15 bins. The grid definition was also varied as well as the estimator minimized in the fit. No visible bias was observed.
- Trigger efficiency: two independent methods to measure the high (~ 99.3%) trigger efficiency were used. The first one considers K_{e4} selected candidates satisfying the Level 1 trigger condition (downscaled by 100 and thus based on small statistics) and measures the efficiency from events which satisfy the Level 2 trigger. The second approach focuses on K^{\pm} \rightarrow \pi^{\pm} \pi_{D}^{0} events satisfying the Level 1 trigger condition, kinematic cuts and loose particle identification. Assigning a pion mass to both \pi^{\pm} and opposite charge electron tracks allows coverage of the full M_{\pi\pi} range with sufficient statistics. Both methods have been used to apply the trigger efficiency to the simulation in the five-dimensional space. As the efficiency is practically uniform and very stable over the two years, the overall effect is almost negligible.

- MUV efficiency: imperfect modeling of the MUV response to pion punch-through has been studied with pion tracks from fully reconstructed decays (K_{3\pi}, K_{\pi\pi}\pi) and quantified as a function of the pion momentum. An additional inefficiency per pion track of 0.5 to 1.5% has been introduced in the simulation resulting in an average inefficiency of 1.7% varying between 1.3 and 2.3% over the five-dimensional space. The observed change in the fit parameters has been quoted as systematic uncertainty.

- Acceptance, resolution and beam geometry: the analysis method does not rely on the detailed matrix element assumptions, provided that the whole phase space is covered. Particular care was taken in controlling the geometrical acceptance and in following the time-dependence of the beam geometry. The cut values on the longitudinal vertex position were varied in steps of few meters. The cut value on the minimum track-beam axis distance at DCH1 was varied in steps of one cm. Both variables are sensitive to the acceptance, trigger composition and beam geometry. The maximum effect observed for each variable was quoted as systematic uncertainty. A reweighting of the kaon simulated spectrum was considered in order to reproduce the data distribution (Figure 3c) and the difference observed in the result was quoted as systematic error. It accounts for residual imperfections in the beam geometry and detector resolution modeling. These three effects of similar size have been added in quadrature under the same label in Table 2.

- Background contamination: the analysis was repeated subtracting the WS events according to their five-dimensional distributions, and scaled by a factor one, two or three. The dependence of each fitted parameter with the WS events scale factor was measured in each M_{\pi\pi} bin. The scale factor for the background subtraction was cross-checked using a detailed simulation of contributing processes and found to be 2.0 \pm 0.3. The effect of the 0.3 uncertainty is propagated to each point according to the measured slopes and quoted as systematic uncertainty (labeled background level in Table 2). The effect is bin-to-bin correlated, as expected.

The background measured from wrong sign (WS) events is observed at low \(S_{\pi} \) values as expected from K_{3\pi} decays where \(S_{\pi} \) cannot exceed \((M_{K} - M_{\pi})^{2} \), and shows a component clustering at \(S_{\pi} = m_{\pi}^{2} \) from \(\pi \rightarrow e\nu \) decays (Figure 5). Varying the semi-axes of the elliptic cut in the plane \((M_{3\pi}, p_{t}) \) accepts different fractions and shapes of the K_{3\pi} background. Results were found to be stable with respect to this cut without bin-to-bin correlation. Residual effects were quoted as systematic uncertainty (labeled background shape in Table 2).

- Electron identification: the final rejection against pions mis-identified as electrons \((E/p > 0.9)\) is achieved by a cut on an LDA variable. In the simulation, the cut effect is applied as a momentum dependent efficiency. The cut value was varied from 0.85 to 0.90 (nominal cut) and 0.95. The analysis was repeated in the three conditions and the residual variation quoted as a systematic uncertainty.

- Radiative corrections: no systematic uncertainty was assigned to the Coulomb correction as its formulation is well established. The PHOTOS photon emission was switched off in the simulation to evaluate its effect on the fitted parameters. One tenth of the full effect was quoted as theoretical uncertainty on the radiative corrections. This is based on detailed comparisons between the PHOTOS and KLOR codes available for the K_{L} \rightarrow \pi^{\pm} e^{\mp} \nu mode [24], and on more recent evaluations for the K_{e4} mode [25]. As expected, the effect comes mostly from removing
events with hard photon emission.

- Dependence on \(S_e \): in the first stage of the analysis, the form factors were assumed to be independent of \(M_{\pi\pi} \). The effect of this assumption was explored by analyzing again the data with a simulation reweighted for a linear dependence of \(F_s \) on \(S_e/4m_{\pi}^2 \) with a slope of 0.068, as measured. The observed deviation between the two analyses was quoted as systematic uncertainty.

Many checks were performed to test the stability of the results, splitting the data in statistically independent sub-samples according to the kaon charge, achromat polarity, dipole magnet polarity, decay vertex longitudinal position, transverse impact position of the electron on the calorimeter front face and data taking time. Results were compared in each bin and found to be consistent within the statistical errors.

In addition, a different reconstruction of the Cabibbo-Maksymowicz variables, based on the information of the KABES detector to measure precisely the kaon momentum and incident direction, improves the resolutions by 50\% for the \(\cos \theta_\pi, \cos \theta_e, \phi \) variables. However, as this information was only available for 65.6\% of the event sample, and also affected by different systematic uncertainties (such as a mis-tagging rate of few percent), this alternative analysis was only used as a cross-check of the standard procedure. The results were found to be in good agreement and the statistical errors on the fitted parameters were reduced by 5 to 10\% with respect to the standard analysis of the same subsample, yet this was not enough of an improvement to compensate for the 20\% increase from the reduced statistics.

8 Results and interpretation

The detailed numerical results obtained in the ten independent slices of \(M_{\pi\pi} \) are given in the Appendix (Table 7 to Table 10). As explained in the previous section, the systematic uncertainties do have a bin-to-bin correlated component, albeit much smaller than the uncorrelated one. In the tables, only the diagonal term of the matrix is quoted. The agreement between data and simulation distributions can be seen in Figure 5 where \(K^+ \) and \(K^- \) data are added and compared to the sum of the simulated distributions using the common set of fitted parameters.

8.1 S- and P-wave form factors

Under the assumption of isospin symmetry, the form factors can be developed in a series expansion of the dimensionless invariants \(q^2 = (S_e/4m_{\pi}^2) - 1 \) and \(S_e/4m_{\pi}^2 \) [26].

Two slope and one curvature terms are sufficient to describe the \(F_s \) form factor variation within the available statistics (the overall scale factor \(f_s \) is to be determined from the branching fraction, not reported here):

\[
F_s = f_s \left(1 + f'_s/f_s \ q^2 + f''_s/f_s \ q^4 + f'_e/f_s \ S_e/4m_{\pi}^2 \right),
\]

while two terms (offset and slope) are enough to describe the \(G_p \) form factor:

\[
G_p/f_s = g_p/f_s + g'_p/f_s \ q^2,
\]

and two constants to describe the \(F_p \) and \(H_p \) form factors. The \(\chi^2 \) of the fit to \(F_s \) is 111.5 for 81 degrees of freedom and blows up to 230.1 for 82 degrees of freedom if the \(S_e \) dependence is set to zero. The numerical results for all terms are given in Table 3 and displayed in Figure 6. It has been checked that potential D-wave contributions (Eq. 1) are indeed consistent with zero and do not affect the S- and P-wave measured values.
Table 2: Systematic uncertainties (in units of 10^{-4}) affecting each of the dimensionless fitted parameters. The background level and S_e dependence contributions are 100% bin-to-bin correlated. Form factor description follows Eq. 3.4 in section 8.1. Scattering lengths (expressed in units of $1/m_{\pi^+}$) are given for Models B and C according to Eq. 6.7 in section 8.2.

$$f'_s/f_s \quad f''_s/f_s \quad f'_e/f_s \quad f_p/f_s \quad g_p/f_s \quad g_p/f_s \quad h_p/f_s$$

<table>
<thead>
<tr>
<th>Source</th>
<th>a_0^2</th>
<th>a_0^2</th>
<th>a_0^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit procedure</td>
<td>4</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>trigger efficiency</td>
<td>25</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>MUV efficiency</td>
<td>16</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>acceptance/resolution</td>
<td>5</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>background shape</td>
<td>11</td>
<td>14</td>
<td>27</td>
</tr>
<tr>
<td>electron identification</td>
<td>19</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>radiative corrections</td>
<td>20</td>
<td>16</td>
<td>51</td>
</tr>
<tr>
<td>background level</td>
<td>26</td>
<td>52</td>
<td>42</td>
</tr>
<tr>
<td>total systematic</td>
<td>46</td>
<td>64</td>
<td>74</td>
</tr>
<tr>
<td>statistical error</td>
<td>70</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>

$$a_0^2$$

<table>
<thead>
<tr>
<th>Source</th>
<th>a_0^2</th>
<th>a_0^2</th>
<th>a_0^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit procedure</td>
<td>9</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>trigger efficiency</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MUV efficiency</td>
<td>10</td>
<td>7</td>
<td><1</td>
</tr>
<tr>
<td>acceptance/resolution</td>
<td>20</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>background shape</td>
<td>31</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>electron identification</td>
<td>14</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>radiative corrections</td>
<td>19</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>background level</td>
<td>19</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>total systematic</td>
<td>50</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>statistical error</td>
<td>128</td>
<td>86</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 3: Results of the form factor measurements. When relevant, the correlations between fitted parameters are given.

<table>
<thead>
<tr>
<th>value</th>
<th>f''_s/f_s</th>
<th>f'_s/f_s</th>
<th>f'_e/f_s</th>
<th>f_s/f_s</th>
<th>f''_s/f_s</th>
<th>f'_s/f_s</th>
<th>f'_e/f_s</th>
<th>f_s/f_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'_s/f_s</td>
<td>0.152 ± 0.007 stat</td>
<td>± 0.005 syst</td>
<td>± 0.005 syst</td>
<td>± 0.005 syst</td>
<td>f''_s/f_s</td>
<td>f'_s/f_s</td>
<td>f'_e/f_s</td>
<td>f_s/f_s</td>
</tr>
<tr>
<td>f''_s/f_s</td>
<td>-0.073 ± 0.007 stat</td>
<td>± 0.006 syst</td>
<td>± 0.006 syst</td>
<td>± 0.006 syst</td>
<td>f'_s/f_s</td>
<td>-0.954</td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td>f'_e/f_s</td>
<td>0.068 ± 0.006 stat</td>
<td>± 0.007 syst</td>
<td>± 0.007 syst</td>
<td>± 0.007 syst</td>
<td>f''_s/f_s</td>
<td>f'_s/f_s</td>
<td>f'_e/f_s</td>
<td>f_s/f_s</td>
</tr>
<tr>
<td>f_p/f_s</td>
<td>-0.048 ± 0.003 stat</td>
<td>± 0.004 syst</td>
<td>± 0.004 syst</td>
<td>± 0.004 syst</td>
<td>g_p/f_s</td>
<td>g'_p/f_s</td>
<td>g'_p/f_s</td>
<td>g'_p/f_s</td>
</tr>
<tr>
<td>g'_p/f_s</td>
<td>0.868 ± 0.010 stat</td>
<td>± 0.010 syst</td>
<td>± 0.010 syst</td>
<td>± 0.010 syst</td>
<td>g_p/f_s</td>
<td>g'_p/f_s</td>
<td>g'_p/f_s</td>
<td>g'_p/f_s</td>
</tr>
<tr>
<td>g'_p/f_s</td>
<td>0.089 ± 0.017 stat</td>
<td>± 0.013 syst</td>
<td>± 0.013 syst</td>
<td>± 0.013 syst</td>
<td>g_p/f_s</td>
<td>g'_p/f_s</td>
<td>g'_p/f_s</td>
<td>g'_p/f_s</td>
</tr>
<tr>
<td>h_p/f_s</td>
<td>-0.398 ± 0.015 stat</td>
<td>± 0.008 syst</td>
<td>± 0.008 syst</td>
<td>± 0.008 syst</td>
<td>g_p/f_s</td>
<td>g'_p/f_s</td>
<td>g'_p/f_s</td>
<td>g'_p/f_s</td>
</tr>
</tbody>
</table>
Figure 5: Distribution of the Cabibbo-Maksymovicz variables projected from the five-dimensional space. The full circles are the K^\pm summed data after background subtraction, the histograms are the simulation with the best fit parameters, and the shaded areas correspond to the WS events multiplied by a factor of 10 to be visible. The inserts show the Data/Simulation ratios. The ϕ distributions are shown separately for K^+ and K^-. The errors shown are statistical only.
Figure 6: Variation of the fitted form factors with q^2 and S_e. **Left column:** F_s^2 projected onto the q^2 axis assuming no S_e dependence and residual variation of the projection on the S_e axis when the q^2 dependence is accounted for. The bottom plot shows the ratio (Data/MC) after fit in each bin of the plane (q^2, S_e) displayed on a linear scale where S_e bins run in each q^2 bin. **Right column:** F_p/f_s (χ^2/ndf = 16.6/9), G_p/f_s (χ^2/ndf = 17.5/8) and H_p/f_s (χ^2/ndf = 18.2/9) versus q^2. The errors displayed in these figures are statistical only.
Low energy constants (LEC \(L_i \)) which are parameters of ChPT can also be extracted from combined fits of meson masses, decay constants and form factor measurements. This has been done in refs [15, 27, 28, 29] including successively S118, E865 and NA48/2 results [3] but such a study is beyond the scope of this article. It is not yet clear if the most recent NNLO calculations support the energy dependence of the now precisely measured form factors. Isospin breaking effects may have to be taken into account as suggested in some preliminary work [30]. However, we can compare NA48/2 results with previous experimental results in terms of slopes and relative form factors using the absolute \(f_s \) value of each experiment as a normalization factor and propagating errors as uncorrelated in absence of any published correlation information. The available measurements are summarized in Table 4. While S118 results were limited by statistics and E865 errors were dominated by systematics, the NA48/2 values are now precise in both respects. The three sets of results are compatible within the experimental errors.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_s)</td>
<td>5.59(14)</td>
<td>5.75(2)(8)</td>
<td>n.a.</td>
</tr>
<tr>
<td>one term ((q^2))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_s' / f_s)</td>
<td>0.080(20)</td>
<td>0.079(15)</td>
<td>0.073(2)(2)</td>
</tr>
<tr>
<td>two terms ((q^2, q^4))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_s'' / f_s)</td>
<td>–</td>
<td>0.184(17)(70)</td>
<td>0.147(7)(5)</td>
</tr>
<tr>
<td>(f_s''' / f_s)</td>
<td>–</td>
<td>-0.104(21)(70)</td>
<td>-0.076(7)(6)</td>
</tr>
<tr>
<td>three terms ((q^2, q^4, S_{e/4m_\pi^2}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_s'' / f_s)</td>
<td>–</td>
<td>n.a.</td>
<td>0.152(7)(5)</td>
</tr>
<tr>
<td>(f_s''' / f_s)</td>
<td>–</td>
<td>n.a.</td>
<td>-0.073(7)(6)</td>
</tr>
<tr>
<td>(f_s'''' / f_s)</td>
<td>–</td>
<td>-0.056(18)(42)*</td>
<td>0.068(6)(7)</td>
</tr>
<tr>
<td>(f_p / f_s)</td>
<td>0.009(32)*</td>
<td>-0.059(17)(47)(^{\dagger})</td>
<td>-0.048(3)(4)</td>
</tr>
<tr>
<td>(g_p / f_s)</td>
<td>0.855(41)</td>
<td>0.809(9)(12)</td>
<td>0.868(10)(10)</td>
</tr>
<tr>
<td>(g_p'' / f_s)</td>
<td>0.070(20)</td>
<td>0.120(19)(7)</td>
<td>0.089(17)(13)</td>
</tr>
<tr>
<td>(h_p / f_s)</td>
<td>-0.480(122)</td>
<td>-0.513(33)(35)</td>
<td>-0.398(15)(8)</td>
</tr>
</tbody>
</table>

8.2 Phase shift and scattering lengths in the \(\pi \pi \) system

Theoretical framework

To extract the \(\pi \pi \) scattering lengths from the measurements of the phase shift \(\delta = \delta_s - \delta_p \), more theoretical ingredients are needed. To perform a fair comparison of experimental results, we must take into account the evolution of the theoretical predictions over the last 30-40 years.

The Roy equations [31] were at the origin of many theoretical developments. These equations are based on the fundamental principles of analyticity, unitarity and crossing symmetries and allow a prediction of the \(\pi \pi \) phase values close to threshold using experimental measurements above the matching point \((\sqrt{s} = 0.8 \text{ GeV}) \), and the subtraction constants \(a_0^0 \) and \(a_0^2 \), the isospin 0 and 2 S-wave scattering lengths (in units of \(1/m_{\pi^+} \)). One should note, however, that the two-pion system of the K\(_{e4} \) decay is never in the \(I=2 \) state, but the combination \((2a_0^0 - 5a_0^2) \) enters as a subtraction constant and brings some sensitivity to \(a_0^2 \) when solving the Roy equations.
Conversely, from measurements of the phases and using the Roy equations, one can determine the corresponding values of the subtraction constants.

We will consider three successive implementations of the solutions:

- **Model A**: in the mid 70’s, several authors had given solutions of these equations [19, 32] and proposed a parametrization \(\delta_0 = f(a_0^0, q^2) \). We will consider the parametrization of [19] which is explicitly given in [5] for \(\delta = \delta_0^0 - \delta_1^0 \) as

\[
\sin 2\delta = 2 \sigma_\pi (a_0^0 + bq^2),
\]

where \(b = b_0 - a_1^0 \) is the difference between the S-wave slope with \(q^2 \) and the P-wave scattering length. In the plane \((a_0^0, b) \) the two parameters are related by an empirical formula: \(b = 0.19 - (a_0^0 - 0.15)^2 \), where the slope \(b \) is a quadratic function of the S-wave scattering length within an uncertainty of \(\pm 0.04 \) which reflects the input data precision. There is no dependence on \(a_0^2 \) in this formulation.

- **Model B**: numerical solutions of the Roy equations were published 25 years later by two groups [20, 33] with a parametrization of the phases \(\delta_{\pi}^I \) with energy \((s = S_\pi) \):

\[
\tan \delta_{\pi}^I (s) = \sigma_\pi s q^2 \{A_{\pi}^I + B_{\pi}^I q^2 + C_{\pi}^I q^4 + D_{\pi}^I q^6\} \left(\frac{4m_\pi^2 - s}{s - s_{\pi}^I}\right),
\]

where the Schenk coefficients \(X_{\pi}^I \) (\(X = A, B, C, D, s \)) are written as a third degree polynomial expansion of the variables \((a_0^0 - 0.225) \) and \((a_0^2 + 0.03706) \). Both predictions agree when using the same boundary conditions at the matching point \(\sqrt{s} = 0.8 \) GeV: \(\delta_0^0 = 82.3^\circ (\pm 3.4^\circ) \) and \(\delta_1^0 = 108.9^\circ (\pm 2.0^\circ) \).

The authors of ref. [33] have in addition parameterized the coefficients as a linear expansion around the values of the phases at the matching point.

In the plane \((a_0^0, a_0^2) \), the values are constrained to lie within a band (called “Universal Band”, UB) fixed by the input data above 0.8 GeV and the Roy equations, defined by the equation of the centre line:

\[
a_0^2 = -0.0849 + 0.232 a_0^0 - 0.0865 (a_0^0)^2 \text{\ and by a width } \pm 0.0088.
\]

- **Model C**: in the framework of ChPT, an additional constraint has been established [21, 22, 34] which can be used together with the Roy equations solutions discussed above to give more precise predictions lying within a ChPT band defined by the equation of the centre line:

\[
a_0^2 = -0.0444 + 0.236 (a_0^0 - 0.220) - 0.61 (a_0^0 - 0.220)^2 - 9.9 (a_0^0 - 0.220)^3
\]

and by a reduced width \(\pm 0.0008 \).

Including more phenomenological ingredients like the scalar radius of the pion, very precise predictions at NNLO have been made by the same authors:

\[
a_0^0(\text{ChPT}) = 0.220 \pm 0.005_{\text{th}}, \quad a_0^2(\text{ChPT}) = -0.0444 \pm 0.0010_{\text{th}}.
\]

Because of the different formulations, a given set of phase measurements will translate to different values of the scattering lengths.

More recently, triggered by the early NA48/2 precise results [3], new theoretical work [35] has shown that isospin symmetry breaking may also alter the phases measured in \(K_{e4} \) decay when all mass effects \((m_{\pi^+} \neq m_{\pi^0}, m_u \neq m_d) \), neglected so far in previous analyses, are considered. The measured phase of the I=0 S-wave is no longer \(\delta_0^0 \) but \(\psi^0_0 \):

\[
\psi^0_0 = \frac{1}{32\pi F_\pi^2} \left((4\Delta_\pi + s) \sigma_\pm + (s - m_{\pi^0}^2) \left(1 + \frac{3}{2R}\right) \sigma_0 \right) + O(p^4),
\]
where \(F_\pi \) is the pion decay constant, \(s = S_\pi, \Delta_\pi = m^2_{\pi^\pm} - m^2_{\pi^0}, \ R = \frac{m_s - \hat{m}}{m_d - m_u} \) and \(\sigma_x = \sqrt{1 - \frac{4m^2_x}{s}}, \) with \(x = [\pm, 0] \).

Even if the difference between the mass-symmetric \(\delta^0_0 (\Delta_\pi = 0, 1/R = 0, \sigma_+ = \sigma_0) \) and \(\psi^0_0 \) is modest in terms of absolute magnitude (10 to 15 mrad) over the whole energy range accessible in \(K_e4 \) decays, the coherent shift toward higher values of the phases has non negligible implications when extracting scattering lengths from such measurements as shown in Figure 7. These effects were of course present but neglected in the results of the S118 [5] and E865 [4] experiments.

Other models, based on analyticity and unitarity but not using Roy equations have also been developed [36, 37]. They exploit the \(K_e4 \) phase measurements associated or not with other \(\pi\pi \) scattering results to extract a value for \(a^0_0 \) through a conformal transformation and an effective range function developed in a series of the variable \(w(s) = \frac{\sqrt{s - \sqrt{4m^2_K - s}}}{\sqrt{s + \sqrt{4m^2_K - s}}} \) with coefficients \((B_0, B_1, \ldots) \). Results from such fits, using only the NA48/2 phase shift measurements will be reported as well.

![Figure 7: Left: Phase shift (δ) measurements without (open circles) and with (full circles) isospin mass effects correction from NA48/2 K_e4 data. The lines correspond to the two-parameter fit within model B. Errors are statistical only. Right: Fits of the NA48/2 K_e4 data in the (\(a^0_0, a^2_0 \)) plane without (black) and with (red) isospin mass effects. Errors are statistical only. Ellipses are 68% CL contours (model B) and circles are the result of the one-parameter fit imposing the ChPT constraint (Model C). The small (green) ellipse corresponds to the best prediction from ChPT.](image)

NA48/2 Results

We first focus on the most elaborated models B and C. The NA48/2 phase measurements are used as input to a two-parameter fit (Eq. 6, Model B) leading to:

\[
\begin{align*}
a^0_0 &= 0.2220 \pm 0.0128_{\text{stat}} \pm 0.0050_{\text{syst}} \pm 0.0037_{\text{th}}, \\
a^2_0 &= -0.0432 \pm 0.0086_{\text{stat}} \pm 0.0034_{\text{syst}} \pm 0.0028_{\text{th}}.
\end{align*}
\]
with a 97% correlation coefficient and a χ^2 of 8.84 for 8 degrees of freedom for statistical errors only. The theoretical errors in the two-parameter fit have been estimated following the prescription described in [35] and are dominated by the experimental precision of the inputs to the Roy equation (for a_0^2) and the neglected higher order terms when introducing the mass effects (for a_0^0). The breakdown of the theoretical errors is given in Table 5. Using the additional ChPT constraint (Eq. 7, Model C), the one-parameter fit gives a χ^2/ndf of 8.85/9 for statistical errors only and the best fit value:

$$a_0^0 = 0.2206 \pm 0.0049_{\text{stat}} \pm 0.0018_{\text{syst}} \pm 0.0064_{\text{th}}$$

corresponding to ($a_0^2 = -0.0442$) from the ChPT constraint (Eq. 7). This result can be compared to the most precise prediction of ChPT (Eq. 8).

Table 5: Contributions to the theoretical uncertainty on the scattering length values obtained in the two-parameter fit (Eq. 6) and the constrained fit (Eq. 6 and 7). The Bern solutions correspond to [20], the Orsay solutions to [33].

<table>
<thead>
<tr>
<th>Roy equation solutions</th>
<th>two-parameter fit</th>
<th>one-parameter fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>B(\text{Bern}) - (\text{Orsay})</td>
<td>$</td>
</tr>
<tr>
<td>$\delta_0^0 \pm 3.4^\circ$ at matching point</td>
<td>0.0010 0.0027</td>
<td>0.0043</td>
</tr>
<tr>
<td>$\delta_1^1 \pm 2.0^\circ$ at matching point</td>
<td>0.0000 0.0002</td>
<td>0.0003</td>
</tr>
<tr>
<td>Isospin corrections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R = 37 \pm 5.$</td>
<td>0.0005 0.0000</td>
<td>0.0008</td>
</tr>
<tr>
<td>$F_\pi = (86.2 \pm 0.5)$ MeV</td>
<td>0.0003 0.0001</td>
<td>0.0003</td>
</tr>
<tr>
<td>Higher Orders</td>
<td>0.0035 0.0005</td>
<td>0.0042</td>
</tr>
<tr>
<td>quadratic sum without CHPT</td>
<td>0.0007 0.0028</td>
<td>0.0062</td>
</tr>
<tr>
<td>ChPT constraint ± 0.0008</td>
<td>– –</td>
<td>0.0017</td>
</tr>
<tr>
<td>quadratic sum</td>
<td>– –</td>
<td>0.0064</td>
</tr>
</tbody>
</table>

The result of a two-parameter fit based on analyticity only [36] from isospin corrected phase measurements leads to:

$$B_0 = 10.229 \pm 2.433, \quad B_1 = -8.768 \pm 5.560, \quad \chi^2/\text{ndf} = 8.87/8$$

with a 99.7% correlation, corresponding to $a_0^0 = 0.2255^{+0.0125}_{-0.0140}$ stat, in agreement also with ChPT predictions for a_0^0, while no value can be given for a_0^2.

Discussion

We have repeated the S118 analysis within Model A (Eq. 5) using the published phase measurements and found results consistent with the published scattering length value [5]. Then we have extended the analysis to Models B and C (Eq. 6 and 7) with and without the latest isospin mass effect corrections. The same exercise has been also performed using the E865 published phase values, after taking into account the recently published errata [38] which solved most of the inconsistencies between the E865 global fit (which cannot be repeated by an external analysis) and the model independent fit (which can be repeated) results. Table 6 summarizes all fit results for existing K\toe4 data, as originally published, and also refitted under various conditions using the same model formulations.

A comparison of the two-parameter fit results of the three experiments under various model assumptions is shown in Figure 8. The effect of the isospin corrections is marginal for S118 due to limited statistics but brings a significant shift for the E865 and NA48/2 results.
Table 6: Fits of experimental phase values within three models based on the Roy equations. In case of Model C, the value of a_0^* is fixed by the constraint and given within parentheses.

<table>
<thead>
<tr>
<th></th>
<th>Model A (Eq. 5)</th>
<th>Model B (Eq. 6)</th>
<th>Model C (Eq. 6,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>no isospin correction</td>
<td>$a_0^* = 0.310 \pm 0.109$</td>
<td>$a_0^* = 0.309 \pm 0.125$</td>
<td>$a_0^* = 0.245 \pm 0.037$</td>
</tr>
<tr>
<td></td>
<td>$b = 0.110 \pm 0.190$</td>
<td>$a_2^* = 0.013 \pm 0.105$</td>
<td>$(a_3^2 = -0.0390)$</td>
</tr>
<tr>
<td>including isospin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>($a_0^* = 0.282 \pm 0.110$)</td>
<td>($a_0^* = 0.280 \pm 0.124$)</td>
<td>$a_0^* = 0.224 \pm 0.040$</td>
</tr>
<tr>
<td></td>
<td>($b = 0.122 \pm 0.192$)</td>
<td>$a_2^* = 0.003 \pm 0.104$</td>
<td>$(a_3^2 = -0.0435)$</td>
</tr>
<tr>
<td>E865 [4, 38] published</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no isospin correction</td>
<td>$a_0^* = 0.213 \pm 0.035$</td>
<td>$a_0^* = 0.206 \pm 0.033$</td>
<td>$a_0^* = 0.235 \pm 0.013$</td>
</tr>
<tr>
<td></td>
<td>$b = 0.269 \pm 0.059$</td>
<td>$a_2^* = -0.063 \pm 0.023$</td>
<td>$(a_3^2 = -0.0409)$</td>
</tr>
<tr>
<td>including isospin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>($a_0^* = 0.184 \pm 0.036$)</td>
<td>($a_0^* = 0.179 \pm 0.033$)</td>
<td>$a_0^* = 0.213 \pm 0.013$</td>
</tr>
<tr>
<td></td>
<td>($b = 0.284 \pm 0.060$)</td>
<td>$a_2^* = -0.072 \pm 0.023$</td>
<td>$(a_3^2 = -0.0461)$</td>
</tr>
<tr>
<td>NA48/2 final result</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no isospin correction</td>
<td>$a_0^* = 0.263 \pm 0.012$</td>
<td>$a_0^* = 0.247 \pm 0.013$</td>
<td>$a_0^* = 0.242 \pm 0.005$</td>
</tr>
<tr>
<td></td>
<td>$b = 0.191 \pm 0.018$</td>
<td>$a_2^* = -0.036 \pm 0.009$</td>
<td>$(a_3^2 = -0.0395)$</td>
</tr>
<tr>
<td>including isospin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>($a_0^* = 0.236 \pm 0.013$)</td>
<td>($a_0^* = 0.222 \pm 0.013$)</td>
<td>$a_0^* = 0.221 \pm 0.005$</td>
</tr>
<tr>
<td></td>
<td>($b = 0.202 \pm 0.018$)</td>
<td>$a_2^* = -0.043 \pm 0.009$</td>
<td>$(a_3^2 = -0.0442)$</td>
</tr>
</tbody>
</table>

Figure 9-left shows all experimental phase measurements from K_{e4} data after correction for the isospin mass effects. Another interesting feature of Model C is the possibility to measure a_0^* from each phase value by solving a polynomial expansion in q^2 along the ChPT constraint band [34]:

$$
\delta = \frac{q}{\sqrt{1 + q^2}} \left(a_0^* + b q^2 + c q^4 + d q^6 \right) \pm e, \text{ with }
$$

$$
b = 0.2527 + 0.151(a_0^* - 0.22) + 1.14(a_0^* - 0.22)^2 + 35.5(a_0^* - 0.22)^3,
$$

$$
c = 0.0063 - 0.145(a_0^* - 0.22), \quad d = -0.0096 \text{ and } e = 0.0035 q^3 + 0.0015 q^5.
$$

Using such a method to extract a single value of a_0^* implies that possible point-to-point correlations are negligible. This assumption is only approximately true, in particular because the systematic uncertainty from background subtraction and the isospin corrections are examples of point-to-point correlated effects. However, it is a meaningful check of the consistency of the experimental measurements within the model. Figure 9-right shows the values of a_0^* obtained for the 21 individual measurements of δ from the three experiments. The theoretical uncertainty e
Figure 8: **Left:** Results from all K_{e4} experiments in the (a_0^0, b) plane. The relation between the slope b and a_0^0 in Model A [19] is represented by the large band. Contours for two-parameter fits results at 68% CL are drawn as dotted before isospin corrections are applied and solid when applied. **Right:** Results from K_{e4} experiments in the (a_0^0, a_2^0) plane for Model B. The S118 experiment has little sensitivity to a_2^0 and is not shown here. The UB (Model B) and ChPT (Model C) bands show the region allowed by the Roy equation solutions and the additional ChPT constraint, respectively.

on the relation inverted in the fit has been added in quadrature to the statistical error to obtain the error on each point.

Figure 9: **Left:** Phase shift (δ) measurements corrected for isospin mass effects for all K_{e4} available results. The line corresponds to the two-parameter fit of the NA48/2 data alone. **Right:** values obtained for each individual measurement from the inverted ChPT constraint. The band corresponds to the global fit over the NA48/2 data, including point to point correlations and is in agreement with the individual values. It means that the model gives a good description of the data points over the whole range.
Going further in the framework of ChPT, the low energy constant (LEC) \tilde{l}_3 can be extracted from the scattering length values determined from the NA48/2 phase measurements through the relations [34]:

\[
\begin{align*}
a_0^0 &= 0.225 - 1.6 \times 10^{-3} \tilde{l}_3 - 1.3 \times 10^{-5} \tilde{l}_3^2 \\
2a_0^2 &= -0.0434 - 3.6 \times 10^{-4} \tilde{l}_3 - 4.3 \times 10^{-6} \tilde{l}_3^2
\end{align*}
\]

From the above equations, it should be noted that a_0^2 is five times less sensitive to \tilde{l}_3 than a_0^0. From the most precise value obtained within Model C, $a_0^0 = 0.2206 \pm 0.0049_{\text{stat}} \pm 0.0018_{\text{syst}}$, one can deduce a range for \tilde{l}_3 between -0.55 and 5.75, in other words: $\tilde{l}_3 = 2.6 \pm 3.2$ which is in very good agreement with the preferred value of ChPT [39] $\tilde{l}_3 = 2.9 \pm 2.4$ and those obtained by lattice calculations [40] clustering around $\tilde{l}_3 = 3 \pm 0.5$. The NA48/2 result excludes large negative values of \tilde{l}_3 allowed in Generalized ChPT [33]. In this framework, it means that \tilde{l}_3 brings only a few percent correction to the leading order term in the pion mass expression, product of the quark masses ($m_u + m_d$) and the quark condensate $\langle 0 | \bar{u} u | 0 \rangle$ in the chiral limit, normalized to the pion decay constant F_π [34]:

\[
M_2^2 = M^2 - \frac{\tilde{l}_3}{32\pi^2 F_\pi^2} M^4 + O(M^6) \quad \text{with} \quad M^2 = (m_u + m_d) |\langle 0 | \bar{u} u | 0 \rangle| / F_\pi^2.
\]

8.3 Combination with other NA48/2 results

The analysis of the decay $K^+ \rightarrow \pi^0 \pi^0 \pi^\pm$ by NA48/2 has enlightened another effect of the scattering lengths through the cusp observed in the M_{π^0,π^0} distribution as a consequence of re-scattering effects in the $\pi\pi$ system below and above the $2m_{\pi^\pm}$ threshold [6, 7].

The cusp and $K_{\pi4}$ results are obviously statistically independent. They have systematic uncertainties of different origins (control of calorimetry and neutral trigger in one case, background and particle identification in the other) and show different correlations between the fitted scattering lengths:

<table>
<thead>
<tr>
<th>$K_{3\pi}$ Cusp</th>
<th>$K_{\pi4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0^0</td>
<td>0.2220 \pm 0.0128_{stat} \pm 0.0050_{syst}</td>
</tr>
<tr>
<td>$a_0^0 - a_0^2$</td>
<td>0.2571 \pm 0.0048_{stat} \pm 0.0029_{syst}</td>
</tr>
<tr>
<td>a_0^2</td>
<td>$-0.0241 \pm 0.0129_{\text{stat}} \pm 0.0096_{\text{syst}}</td>
</tr>
<tr>
<td>correlation</td>
<td>-0.839 (stat. only), -0.774 (all)</td>
</tr>
<tr>
<td>$K_{\pi4}$</td>
<td>0.967 (stat. only), 0.969 (all)</td>
</tr>
</tbody>
</table>

The systematic errors quoted for the cusp results includes internal and external uncertainties, but no uncertainty associated to theory. In the $K_{\pi4}$ result, the theoretical uncertainty contribution (Table 5) is even smaller than the experimental systematic error and thus has very little impact on the overall precision.

Neglecting potential (but small) common systematic contribution to the experimental errors, it is possible to combine the two measurements and to get a more precise result ($\chi^2/\text{ndf} = 1.84/2$):

\[
\begin{align*}
a_0^0 &= 0.2210 \pm 0.0047_{\text{stat}} \pm 0.0040_{\text{syst}}, \quad a_0^2 = -0.0429 \pm 0.0044_{\text{stat}} \pm 0.0028_{\text{syst}} \\
a_0^0 - a_0^2 &= 0.2639 \pm 0.0020_{\text{stat}} \pm 0.0015_{\text{syst}}.
\end{align*}
\]

The two input sets of values and their combination are displayed in Figure 10. This last result, which does not require any additional theoretical ingredient, is in very good agreement with the most precise ChPT predictions (Eq. 8) given with a similar precision and recalled here:

$$\begin{align*}
a_0^0^{(\text{ChPT})} &= 0.220 \pm 0.005_{\text{th}}, \quad a_0^2^{(\text{ChPT})} = -0.0444 \pm 0.0010_{\text{th}}, \\
a_0^0 - a_0^2 &= 0.265 \pm 0.004_{\text{th}}.
\end{align*}$$

An alternative picture of the same results can be seen in Figure 11a for the variables $a_0^0 - a_0^2$ and a_0^2 measured by NA48/2 and DIRAC experiments through three different processes.
It is worth comparing the now precise a_0^0 experimental measurement with very precise theoretical lattice QCD calculations involving also ChPT formulations:

$$a_0^0 = -0.04330 \pm 0.00042_{\text{stat}}$$
$$a_0^0 = -0.04385 \pm 0.00028_{\text{stat}}$$
by the NPLQCD collaboration [41],

$$a_2^0 = 0.0444 \pm 0.0007_{\text{stat}}$$
$$a_2^0 = 0.04385 \pm 0.00028_{\text{stat}}$$
by the ETM collaboration [42].

When using the ChPT constraint, the combined NA48/2 results become ($\chi^2/\text{ndf} = 1.87/1$):

$$a_0^0 = 0.2196 \pm 0.0028_{\text{stat}} \pm 0.007_{\text{syst}}$$
$$a_0^0 - a_2^0 = 0.2640 \pm 0.0021_{\text{stat}} \pm 0.0015_{\text{syst}}$$
$$a_2^0 = -0.0444 \pm 0.0007_{\text{stat}} \pm 0.0005_{\text{syst}} \pm 0.0008_{\text{ChPT}}$$

where the last error on a_2^0 comes from the ChPT constraint uncertainty.

Figure 10: NA48/2 $K_{\pi4}$ (black) and cusp (blue) results from the two-parameter fits in the (a_0^0, a_2^0) (left) and (a_0^0, a_2^0) (right) planes. In each plane the smallest (red) contour corresponds to the combination of the NA48/2 results. The correlation coefficient is then 0.21 in the left plane and 0.92 in the right plane. The dashed lines visualize the ChPT constraint band and the solid (black) lines the Universal Band. The other (green) lines correspond to the DIRAC result band [8].

Such precise values of a_0^0 and a_2^0 can be used to evaluate the phase of ε', the direct CP violating amplitude in the process $K_L \rightarrow \pi\pi$ through interference between amplitudes in the isospin states 0 and 2. This phase is given by the value of $(\delta_0^0 - \delta_0^0 + \frac{\pi}{2})$ at the energy of the neutral kaon mass. Propagating the NA48/2 scattering length values and their correlated experimental errors to the phase values using the numerical solutions of Roy equations [20], we obtain $(\delta_0^0 - \delta_0^0 = (47.67 \pm 0.06_{\text{exp}}) \text{ degrees at } M_{K^0}$ where the uncertainty corresponds to statistical and systematic errors added in quadrature. This result is fully consistent with the expectations of [22, 20] but with a much reduced experimental uncertainty. The width of the ChPT constraint translates to an additional uncertainty of ± 0.3 degree to be added linearly to the experimental one. Using these values, we obtain the phase of ε', $\phi_{\varepsilon'} = (42.3 \pm 0.4) \text{ degrees}$.

9 Summary

NA48/2 results

From the study of 1.13 millions $K_{\pi4}$ decays with both charge signs and with a low relative background of $\sim 0.6\%$, the S- and P-wave form factors and their variation with energy have been measured (Table 3). Evidence for a $\sim 5\%$ contribution from F_p has been established; a constant H_p and linear G_p variation with S_π have been measured. The F_s form factor variation
Figure 11: (a): Two-parameter best fit values for $a_0^0 - a_0^2$ and a_0^2 from both NA48/2 channels and combined result. The DIRAC result is shown as well. (b): Two-parameter best fit values for a_0^0 and a_0^2 from each K_{e4} experiment and combined result (dominated by the NA48 precision). The right part of the large S118 error bar is truncated. Vertical bands correspond to the best predictions from ChPT:

$$a_0^0 = 0.2200 \pm 0.0049_{\text{stat}} \pm 0.0018_{\text{syst}}, a_0^2 = -0.0432 \pm 0.0048_{\text{stat}} \pm 0.0020_{\text{syst}}.$$

in the plane $(M_{\pi\pi}, M_{e\nu})$ can be described by a slope and curvature in S_0 and a slope in S_2. The precise measurement of the phase shift of the $\pi\pi$ system has allowed to extract the scattering lengths a_0^0 and a_0^2 using the Roy equations after correction for isospin breaking mass effects:

$$a_0^0 = 0.2220 \pm 0.0128_{\text{stat}} \pm 0.0050_{\text{syst}} \pm 0.0037_{\text{th}} ,$$

$$a_0^2 = -0.0432 \pm 0.0008_{\text{stat}} \pm 0.0004_{\text{syst}} \pm 0.0002_{\text{th}}.$$

This very sensitive test strongly confirms the predictions of Chiral Perturbation Theory and the underlying assumption of a large quark condensate contributing to the pion mass. Combining both NA48/2 K_{e4} and cusp results from independent analyses with different sensitivities, an even more precise set of values is obtained:

$$a_0^0 = 0.2210 \pm 0.0047_{\text{stat}} \pm 0.0040_{\text{syst}}, a_0^2 = -0.0429 \pm 0.0044_{\text{stat}} \pm 0.0028_{\text{syst}},$$

$$a_0^2 - a_0^0 = 0.2639 \pm 0.0020_{\text{stat}} \pm 0.0015_{\text{syst}}.$$

which brings the first experimental determination of a_0^2 in perfect agreement with the currently very precise calculations of lattice QCD.

Using the additional constraint from ChPT (Eq. 7), the results from the K_{e4} analysis alone are:

$$a_0^0 = 0.2206 \pm 0.0049_{\text{stat}} \pm 0.0018_{\text{syst}} \pm 0.0004_{\text{th}},$$

and combined with the cusp results:

$$a_0^0 = 0.2196 \pm 0.0028_{\text{stat}} \pm 0.0020_{\text{syst}}, a_0^2 = 0.2640 \pm 0.0021_{\text{stat}} \pm 0.0015_{\text{syst}},$$

$$a_0^2 - a_0^0 = -0.0444 \pm 0.0007_{\text{stat}} \pm 0.0005_{\text{syst}} \pm 0.0008_{\text{ChPT}}.$$

These last values can be used to estimate the phase of the direct CP violating amplitude ε', giving $\phi_{\varepsilon'} = (42.3 \pm 0.4)$ degrees at the $M_{K\pi}$ energy.
Combining \(K_{e4} \) results

Combining \(K_{e4} \) NA48/2 results with previous experimental results [5, 38] and applying isospin breaking corrections to all phase shift values, we obtain for the two-parameter fit (Eq. 6, Model B):

\[
\begin{align*}
a_0^0 &= 0.2173 \pm 0.0118_{\text{stat}} \pm 0.0043_{\text{syst}} \pm 0.0037_{\text{th}}, \\
a_0^2 &= -0.0462 \pm 0.0079_{\text{stat}} \pm 0.0030_{\text{syst}} \pm 0.0028_{\text{th}},
\end{align*}
\]

where all experimental errors are considered as independent between experiments and theoretical errors common to all experiments. Using the additional ChPT constraint (Eq. 7, Model C), we obtain:

\[
\begin{align*}
a_0^0 &= 0.2198 \pm 0.0046_{\text{stat}} \pm 0.0016_{\text{syst}} \pm 0.0064_{\text{th}}, \\
a_0^2 &= -0.0445 \pm 0.0011_{\text{stat}} \pm 0.0004_{\text{syst}} \pm 0.0008_{\text{ChPT}}.
\end{align*}
\]

The new world average result is dominated by the NA48/2 experimental precision and illustrated in Figure 11b.

Acknowledgments

We gratefully acknowledge the CERN SPS accelerator and beam-line staff for the excellent performance of the beam and the technical staff of the participating institutes for their effort in the maintenance and operation of the detectors. We enjoyed constructive exchanges with S. Pislak and P. Truöl from the E865 collaboration and we also would like to thank all theory groups who expressed their interest in this work by fruitful discussions which triggered the latest developments of the analysis, in particular G. Colangelo, J. Gasser and the late J. Stern for their constant support and contribution.
Appendix: Fit results for independent $M_{\pi\pi}$ bins.

The following tables give the definition of the $M_{\pi\pi}$ bins (Table 7) and the fit results for the four form factors (Table 8, 9) and ϕ phase shift (Table 10) in each individual bin.

Table 7: Definition of the ten bins in $M_{\pi\pi}$: bin range, event numbers ($K^+ + K^-$), barycenter and χ^2 of the fits for (2×1496) degrees of freedom in each bin.

<table>
<thead>
<tr>
<th>bin number</th>
<th>$M_{\pi\pi}$ range (MeV/c^2)</th>
<th>Number of events ($K^+ + K^-$)</th>
<th>$M_{\pi\pi}$ barycenter (MeV/c^2)</th>
<th>χ^2 ndf = 2992</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>279.00 - 291.29</td>
<td>71940 + 39572</td>
<td>286.06</td>
<td>3087.66</td>
</tr>
<tr>
<td>2</td>
<td>291.29 - 300.50</td>
<td>72197 + 40354</td>
<td>295.95</td>
<td>2955.93</td>
</tr>
<tr>
<td>3</td>
<td>300.50 - 309.22</td>
<td>71671 + 40177</td>
<td>304.88</td>
<td>3092.96</td>
</tr>
<tr>
<td>4</td>
<td>309.22 - 317.73</td>
<td>71558 + 40164</td>
<td>313.48</td>
<td>2977.36</td>
</tr>
<tr>
<td>5</td>
<td>317.73 - 326.35</td>
<td>72725 + 40181</td>
<td>322.02</td>
<td>2954.31</td>
</tr>
<tr>
<td>6</td>
<td>326.35 - 335.33</td>
<td>72618 + 40290</td>
<td>330.80</td>
<td>2962.53</td>
</tr>
<tr>
<td>7</td>
<td>335.33 - 345.25</td>
<td>72817 + 39995</td>
<td>340.17</td>
<td>3010.69</td>
</tr>
<tr>
<td>8</td>
<td>345.25 - 357.03</td>
<td>73273 + 40751</td>
<td>350.94</td>
<td>3082.64</td>
</tr>
<tr>
<td>9</td>
<td>357.03 - 373.27</td>
<td>73232 + 41292</td>
<td>364.57</td>
<td>3113.97</td>
</tr>
<tr>
<td>10</td>
<td>> 373.27</td>
<td>74336 + 41560</td>
<td>389.95</td>
<td>2929.37</td>
</tr>
</tbody>
</table>

Table 8: Result of the fits for $F_s^2/F_s^2(0)$ (neglecting a possible $M_{\pi\pi}$ dependence) and $F_p/F_s(0)$. An arbitrary scale has been applied to set $F_s^2/F_s^2(0) = 1$ at threshold. Values are given only as an indication of the variation as the analysis has been done in the plane (q^2, S_s). The quoted systematic errors correspond to the bin-to-bin uncorrelated part.

<table>
<thead>
<tr>
<th>bin number</th>
<th>$F_s^2/F_s^2(0)$ value</th>
<th>statistical error</th>
<th>systematic error</th>
<th>$F_p/F_s(0)$ value</th>
<th>statistical error</th>
<th>systematic error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0050</td>
<td>0.0030</td>
<td>0.0031</td>
<td>-0.0318</td>
<td>0.0117</td>
<td>0.0027</td>
</tr>
<tr>
<td>2</td>
<td>1.0379</td>
<td>0.0032</td>
<td>0.0016</td>
<td>-0.0569</td>
<td>0.0109</td>
<td>0.0060</td>
</tr>
<tr>
<td>3</td>
<td>1.0567</td>
<td>0.0032</td>
<td>0.0018</td>
<td>-0.0367</td>
<td>0.0104</td>
<td>0.0057</td>
</tr>
<tr>
<td>4</td>
<td>1.0743</td>
<td>0.0033</td>
<td>0.0018</td>
<td>-0.0273</td>
<td>0.0101</td>
<td>0.0056</td>
</tr>
<tr>
<td>5</td>
<td>1.0875</td>
<td>0.0033</td>
<td>0.0011</td>
<td>-0.0641</td>
<td>0.0097</td>
<td>0.0072</td>
</tr>
<tr>
<td>6</td>
<td>1.0975</td>
<td>0.0034</td>
<td>0.0016</td>
<td>-0.0672</td>
<td>0.0095</td>
<td>0.0066</td>
</tr>
<tr>
<td>7</td>
<td>1.1104</td>
<td>0.0034</td>
<td>0.0013</td>
<td>-0.0381</td>
<td>0.0096</td>
<td>0.0080</td>
</tr>
<tr>
<td>8</td>
<td>1.1191</td>
<td>0.0034</td>
<td>0.0010</td>
<td>-0.0530</td>
<td>0.0094</td>
<td>0.0057</td>
</tr>
<tr>
<td>9</td>
<td>1.1257</td>
<td>0.0034</td>
<td>0.0012</td>
<td>-0.0542</td>
<td>0.0095</td>
<td>0.0055</td>
</tr>
<tr>
<td>10</td>
<td>1.1550</td>
<td>0.0035</td>
<td>0.0060</td>
<td>-0.0462</td>
<td>0.0103</td>
<td>0.0057</td>
</tr>
</tbody>
</table>
Table 9: Result of the fits for $G_p/F_s(0)$ and $H_p/F_s(0)$. The quoted systematic errors correspond to the bin-to-bin uncorrelated part only.

<table>
<thead>
<tr>
<th>bin</th>
<th>$G_p/F_s(0)$</th>
<th>statistical error</th>
<th>systematic error</th>
<th>$H_p/F_s(0)$</th>
<th>statistical error</th>
<th>systematic error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8856</td>
<td>0.0453</td>
<td>0.0116</td>
<td>-0.3147</td>
<td>0.0908</td>
<td>0.0339</td>
</tr>
<tr>
<td>2</td>
<td>0.9091</td>
<td>0.0249</td>
<td>0.0147</td>
<td>-0.3659</td>
<td>0.0560</td>
<td>0.0135</td>
</tr>
<tr>
<td>3</td>
<td>0.8661</td>
<td>0.0189</td>
<td>0.0104</td>
<td>-0.3498</td>
<td>0.0468</td>
<td>0.0171</td>
</tr>
<tr>
<td>4</td>
<td>0.8581</td>
<td>0.0160</td>
<td>0.0089</td>
<td>-0.4820</td>
<td>0.0432</td>
<td>0.0126</td>
</tr>
<tr>
<td>5</td>
<td>0.9193</td>
<td>0.0140</td>
<td>0.0102</td>
<td>-0.3585</td>
<td>0.0415</td>
<td>0.0171</td>
</tr>
<tr>
<td>6</td>
<td>0.9261</td>
<td>0.0128</td>
<td>0.0099</td>
<td>-0.4741</td>
<td>0.0410</td>
<td>0.0154</td>
</tr>
<tr>
<td>7</td>
<td>0.8859</td>
<td>0.0120</td>
<td>0.0103</td>
<td>-0.3861</td>
<td>0.0412</td>
<td>0.0273</td>
</tr>
<tr>
<td>8</td>
<td>0.9227</td>
<td>0.0109</td>
<td>0.0065</td>
<td>-0.3253</td>
<td>0.0419</td>
<td>0.0193</td>
</tr>
<tr>
<td>9</td>
<td>0.9389</td>
<td>0.0100</td>
<td>0.0052</td>
<td>-0.3673</td>
<td>0.0441</td>
<td>0.0380</td>
</tr>
<tr>
<td>10</td>
<td>0.9497</td>
<td>0.0096</td>
<td>0.0057</td>
<td>-0.5022</td>
<td>0.0503</td>
<td>0.0310</td>
</tr>
</tbody>
</table>

Table 10: Result of the fits for the phase shift δ. The quoted systematic errors correspond to the bin-to-bin uncorrelated part only. The isospin correction (later subtracted) is given in the last column.

<table>
<thead>
<tr>
<th>bin</th>
<th>δ value</th>
<th>statistical error</th>
<th>systematic error</th>
<th>isospin corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mrad)</td>
<td>(mrad)</td>
<td>(mrad)</td>
<td>(mrad)</td>
</tr>
<tr>
<td>1</td>
<td>52.775</td>
<td>25.102</td>
<td>7.934</td>
<td>12.542</td>
</tr>
<tr>
<td>2</td>
<td>91.564</td>
<td>14.267</td>
<td>7.787</td>
<td>11.555</td>
</tr>
<tr>
<td>3</td>
<td>116.819</td>
<td>11.772</td>
<td>4.743</td>
<td>11.543</td>
</tr>
<tr>
<td>4</td>
<td>139.295</td>
<td>10.399</td>
<td>3.908</td>
<td>11.760</td>
</tr>
<tr>
<td>5</td>
<td>157.357</td>
<td>8.927</td>
<td>2.327</td>
<td>12.071</td>
</tr>
<tr>
<td>6</td>
<td>178.237</td>
<td>8.354</td>
<td>1.723</td>
<td>12.441</td>
</tr>
<tr>
<td>7</td>
<td>218.901</td>
<td>8.329</td>
<td>4.821</td>
<td>12.866</td>
</tr>
<tr>
<td>8</td>
<td>238.024</td>
<td>7.714</td>
<td>2.261</td>
<td>13.377</td>
</tr>
<tr>
<td>9</td>
<td>284.913</td>
<td>7.425</td>
<td>2.168</td>
<td>14.044</td>
</tr>
<tr>
<td>10</td>
<td>325.778</td>
<td>7.011</td>
<td>1.769</td>
<td>15.322</td>
</tr>
</tbody>
</table>
References

