Determination of the CP-violating phase in $B_s^0 \rightarrow J/\psi \phi$ decays at LHCb

Greig A Cowan, University of Edinburgh

On behalf of the LHCb collaboration

Lake Louise Winter Institute
18th February 2010
Overview

1. The roadmap to ϕ_s using $B_s \rightarrow J/\psi\phi$
2. Alternative routes to ϕ_s
3. Related measurements in B_s^0 sector
4. Summary

Full details in LHCb roadmap: B. Adeva et al arXiv:0912.4179

- K. Akiba for details of LHCb 2009 results
- H. Skottowe for $B_d \rightarrow K^*\mu\mu$
What is ϕ_s?

- $B_s^0 \rightarrow J/\psi \phi$ dominated by $b \rightarrow c \bar{c} s$ tree-level transitions.
 - Small penguin pollution, δP.

- Interference between B_s^0 decay to $J/\psi \phi$ either directly or via mixing gives rise to a CP violating phase $\phi_s^{J/\psi \phi} = \Phi_M - 2\Phi_D$

- SM prediction:
 $\phi_s^{J/\psi \phi} = -2\beta_s + \delta P = -0.037 \pm 0.002 + \delta P$
New physics in ϕ_s

- New particles in the $B_s^0 - \bar{B}_s^0$ box diagrams can significantly modify
 $\phi_{s,SM} \rightarrow \phi_{s,SM} + \phi_s$.

- Tevatron currently $\sim 2.1\sigma$ from SM. See talk this week from E Pueschel for details.
Measuring ϕ_s using $B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$

- $P \rightarrow VV$: final state is admixture of CP-odd ($\ell = 1$) and CP-even ($\ell = 0, 2$) with different lifetimes.

- **Angular analysis** using transversity angles θ, φ, ψ

- Unbinned negative log-likelihood fit to statistically disentangle final state.

- **6 observables**: $\theta, \varphi, \psi, c\tau, m_{B_s}$, initial flavour tag

- **8 physics parameters**: $\phi_s, \bar{\Gamma}_s, \Delta\Gamma_s, \Delta m_s, \delta_\parallel, \delta_\perp, |A_\parallel|^2, |A_\perp|^2$

- Many **detector parameters**: time and mass resolutions...
$B_s^0 \rightarrow J/\psi \phi$ differential decay rate

$$\frac{\partial^4 \Gamma(B_s^0 \rightarrow J/\psi \phi)}{\partial t \, \partial \cos \theta \, \partial \phi \, \partial \cos \psi} \propto \sum_{k=1}^{6} h_k(t) f_k(\theta, \psi, \phi)$$

<table>
<thead>
<tr>
<th>k</th>
<th>$h_k(t)$</th>
<th>$\bar{h}_k(t)$</th>
<th>$f_k(\theta, \psi, \phi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$</td>
<td>A_0(t)</td>
<td>^2$</td>
</tr>
<tr>
<td>2</td>
<td>$</td>
<td>A_{</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$</td>
<td>A_{\perp}(t)</td>
<td>^2$</td>
</tr>
<tr>
<td>4</td>
<td>$\Im{A_{</td>
<td></td>
<td>}^*(t)A_{\perp}(t)}$</td>
</tr>
<tr>
<td>5</td>
<td>$\Re{A_0^*(t)A_{</td>
<td></td>
<td>}(t)}$</td>
</tr>
<tr>
<td>6</td>
<td>$\Im{A_0^*(t)A_{\perp}(t)}$</td>
<td>$\Im{\bar{A}0^*(t)\bar{A}{\perp}(t)}$</td>
<td>$\frac{1}{\sqrt{2}} \sin 2\psi \sin 2\theta \cos \phi$</td>
</tr>
</tbody>
</table>

![Graphs showing cosθ, ψ, and cosψ distributions](image_url)
Landmarks on the road to ϕ_s

- **Propertime resolution** is good ($\sim 40\text{fs}$) \Rightarrow resolve fast B_s oscillations.

- Fit for res with $B_s^0 \rightarrow J/\psi \phi$ and check with control channels (i.e., $B_d \rightarrow J/\psi K^*$).

- **Large signal yield**

 - Signal events in $2fb^{-1}$: 117k
 - B/S(long-lived): ~ 0.5
 - B/S(prompt J/ψ): ~ 1.6

- Prompt bkg has $c\tau \sim 0\text{ ps}$ so "easy" to isolate.

Note: The text is a summary of the content on the image. The figures and graphs are not transcribed here but are included in the presentation. For detailed analysis and further information, please refer to the original document.
Landmarks: first ϕ mass peak from LHCb!

No particle ID

- PID comes from the RICH detectors.
- $N_{signal} = 574.4 \pm 35.5$
- Now the search for J/ψ begins!

With particle ID

- $m_0 = 1019.66 \pm 0.24$ MeV
- $\sigma_{Gauss} = 1.96 \pm 0.37$ MeV

Greig A Cowan (Edinburgh)
ϕ_s at LHCb
LLWI February 2010
Landmarks on the road to ϕ_s

- **Tagging** of initial B_s flavour.
 - Combination of several methods: electron, muon, kaon, inclusive vertex, same side kaon.
 - Mistag $\omega \sim 33\%$, tagging power $\epsilon \sim 6\%$.
 - $B_d \rightarrow J/\psi K^*, B_u \rightarrow J/\psi K$ to calibrate the opposite side tagging. Fits can be used to extract ω.
 - $B_s \rightarrow D_s \pi, B_s \rightarrow D_s \mu\nu$ to calibrate the same side tagging.

- **Angular acceptances**
 - LHCb detector geometry (20-300 mrad) distorts the θ, ϕ, ψ angular distributions by $\sim 8\%$.
 - Ignoring this effect biases $|A_\perp|^2, |A_\parallel|^2$, ϕ_s **unbiased**
 - $B_d \rightarrow J/\psi K^*$ is a $P \rightarrow VV$ decay so use as control channel to understand acceptances.
The sensitivity of LHCb to ϕ_s is shown in the graph. The significance of ϕ_s can be estimated using the integrated luminosity (fb^{-1}) and various cross-sections and branching ratios. The results are as follows:

- **0.3fb$^{-1}$ at 7TeV:** LHCb should improve upon the Tevatron limit.
 - If $\phi_s \sim 0.7$ then LHCb can discover NP in $\bar{B}_s^0 - B_s^0$ mixing (i.e. establish $\phi_s \neq -2\beta_s$ at 5σ) with $0.3fb^{-1}$ of data!

- **2fb$^{-1}$ at 14TeV:** LHCb $\sigma(\phi_s) \sim$ SM value (0.036)
Alternative routes to ϕ_s

Pure CP eigenstates:

- $B^0_s \to J/\psi f_0(980)$ where $f_0 \to \pi^+\pi^-$
- $B^0_s \to J/\psi \eta$, $B^0_s \to J/\psi \eta'$

\Rightarrow No angular analysis is needed!

$$\Gamma(B^0_s \to f_{CP}) = |A_f|^2 e^{-\Gamma_{st}} \left(\cosh \frac{\Delta \Gamma_{st}}{2} - \eta_f \cos \phi_s \sinh \frac{\Delta \Gamma_{st}}{2} + \eta_f \sin \phi_s \sin(\Delta m_{st}) \right)$$

η, η' decay modes contain $\geq 1\gamma$ \Rightarrow lower reconstruction efficiency than charged particles, so consider $B_s \to J/\psi f_0$ ($\eta_f = -1$).

<table>
<thead>
<tr>
<th>Signal events in $2fb^{-1}$</th>
<th>26.1k</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/S(prompt J/ψ)</td>
<td>~ 0.11</td>
</tr>
<tr>
<td>B/S($b\bar{b}$)</td>
<td>~ 0.21</td>
</tr>
<tr>
<td>B/S($B^0_s \to J/\psi \eta'$)</td>
<td>~ 0.024</td>
</tr>
<tr>
<td>B/S($B^+_u \to J/\psi K^+$)</td>
<td>~ 0.042</td>
</tr>
</tbody>
</table>

- There is a non-resonant $\pi\pi$ S-wave contribution.
- With $2fb^{-1}$: $\sigma(\phi_s) = 0.044$

CP measurements using penguins

- $B_s^0 \rightarrow \phi\phi$ is a FCNC decay, forbidden at tree level in SM. Gluonic penguin dominates.

 - Similar to $B_d \rightarrow \phi K_s$ at the B factories.

\[
\Phi_{SM} = \Phi_M - 2\Phi_D = 2\text{arg}(V_{tb}V_{ts}^*) - 2\text{arg}(V_{tb}V_{ts}^*) \approx 0
\]

- Sign of NP if LHCb measures $\Phi \neq 0$!

- Angular analysis and fit like $B_s^0 \rightarrow J/\psi\phi$.

<table>
<thead>
<tr>
<th>BR</th>
<th>$\sim 2.4 \times 10^{-5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal events in $2fb^{-1}$</td>
<td>$6.2k$</td>
</tr>
<tr>
<td>B/S</td>
<td>$< 0.8@90% \text{ CL}$</td>
</tr>
</tbody>
</table>

- With $10fb^{-1}$: $\sigma(\Phi) = 0.06$

N. Styles et al LHCb-PUB-2009-025
Mixing in $B_s^0 \to J/\psi \phi$ is a promising way to discover NP at the LHC.

- LHCb with $2 fb^{-1}$ (one nominal year): $\sigma(\phi_s) \sim 0.03$ rad

LHCb detector being calibrated with 2009 data.

Additional routes can be used for ϕ_s, i.e., $B_s \to J/\psi f_0, \eta, \eta'$.

$B_s^0 \to \phi\phi$ is an alternative channel to probe NP in $\bar{b} \to \bar{s}s\bar{s}$.

LHCb is ready to start hunting down NP in the B_s^0 sector!
The LHCb detector

- Forward arm spectrometer. b/\bar{b} production correlated in forward/backward direction.
- Lumi $\sim 10^{32} \text{cm}^{-2}\text{s}^{-1} \Rightarrow 2\text{fb}^{-1}/\text{nominal year} \Rightarrow 10^{12} b\bar{b}$ events.
- Access to B_u, B_d, B_s, Λ_b.

See talk from Kazuyoshi Akiba for details of LHCb 2009 results
What is ϕ_s?

\[A(b \to \bar{c}c\bar{s}) = V_{cs}V_{cb}^*(A_T + P_c) + V_{us}V_{ub}^*P_u + V_{ts}V_{tb}^*P_t \]
\[= V_{cs}V_{cb}^*(A_T + P_c - P_t) + V_{us}V_{ub}^*(P_u - P_t). \]
\[V_{ts}V_{tb}^* = -V_{us}V_{ub} - V_{cs}V_{cb}. \]

- Penguin contribution ($P_u - P_t$) suppressed by factor $\lambda^2 \sim 0.05$ wrt $(A_T + P_c - P_t)$.
- So assume decays dominated by single weak phase $\Phi_D = \text{arg}(V_{cs}V_{cb}^*)$.
- B_s^0 mixing phase, $\Phi_M = 2\text{arg}(V_{ts}V_{tb}^*)$.
- $\phi_s^{J/\psi} = \Phi_M - 2\Phi_D = 2\text{arg}(V_{ts}V_{tb}^*) - 2\text{arg}(V_{cs}V_{cb}^*) + \delta P$
- CKM triangle:
\[V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0 \quad \Rightarrow \quad \beta_s = \text{arg}\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = \eta\lambda^2 + \mathcal{O}(\lambda^4) \]

- SM prediction, $\delta P = 0$:
\[\phi_s^{J/\psi} = -2\beta_s = -0.037 \pm 0.002 \]
New physics in ϕ_s

- ϕ_s^Δ is the same NP phase modifying other quantities, e.g.,

$$\Delta \Gamma_s = 2|\Gamma_{12}^{SM}| \cos(\phi_{s,SM}^{M/\Gamma} + \phi_s^\Delta)$$

$$\phi_{s,SM}^{M/\Gamma} = \arg\left(-\frac{M_{12}^{SM}}{\Gamma_{12}^{SM}}\right) \sim 0.0034 \neq \phi_s^{J/\psi\phi}$$
High sensitivity to small ϕ_s when B/\bar{B} initial state determined using flavour tagging.

- 8 physics parameters that have already been well measured at the Tevatron.
- Interesting signs of new physics in value of ϕ_s.

Greig A Cowan (Edinburgh)

LHCb

LLWI February 2010 18 / 13
Constraints on NP in B_s mixing

New Physics in $B_s - \bar{B}_s$ mixing
S-wave contribution to $B_s \rightarrow J/\psi KK$

- $B_s^0 \rightarrow J/\psi \phi$ decay rate only includes $\phi \rightarrow KK$ (P-wave) in the KK mass region.
- A 5→10% contribution from S-wave in the KK system cannot be excluded.
- S-wave has a different time and angular distribution from the P-wave.
 \[\Rightarrow \text{4 new terms} \] in the differential decay rate.
- Ignoring 10% s-wave leads to a \[\sim 7 \rightarrow 17\% \text{ bias on } \phi_s. \]
- Including S-wave removes bias but only increases $\sigma(\phi_s)$ by 15%.

Y. Xie et al JHEP 0909:074,2009