Results from the Tevatron and LHC Prospects

Beate Heinemann

University of California, Berkeley and Lawrence Berkeley National Laboratory

PASCOS, Hamburg, July 2009
The Standard Model and the Standard Questions We Have

- What is the origin of electroweak symmetry breaking?
 - Is there a Higgs boson?
 - WHERE IS IT?
- What is the Dark Matter?
 - Is it produced at colliders?
- Is Nature supersymmetric?
- Are there new dimensions of space?
- Is there anything maybe that nobody has thought of and no one has looked for and we missed it?

Hierarchy problem:
- New physics should be at the TeV scale!
Outline

- **Tevatron Results**
 - **Electroweak Symmetry Breaking**
 - W boson and top quark mass
 - Higgs boson search
 - **Beyond the Standard Model**
 - Supersymmetry
 - Resonances: Z', W' etc.

- **LHC Status**
 - Status of accelerator and detectors
 - Physics perspectives with early data

- **Conclusions and Outlook**
Tevatron Status

- Luminosity up to now 7 fb⁻¹
 - Running in 2010 approved => 9 fb⁻¹
 - Running in 2011 considered => 12 fb⁻¹

(from J. Konigsberg)
The Electroweak Precision Data

- Precision measurements of
 - muon decay constant and α
 - Z boson properties (LEP, SLD)
 - W boson mass (LEP+Tevatron)
 - Top quark mass (Tevatron)

\[M_W^2 = \frac{\pi \alpha (M_Z^2)}{\sqrt{2} G_F} \frac{1}{(1 - (M_W^2 / M_Z^2))} \left(\frac{1}{1 - \Delta r} \right) \]

Δr: $O(3\%)$ radiative corrections dominated by tb and Higgs
- New World average: $M_W = 80399 \pm 23 \text{ MeV}$
- Ultimate Run 2 precision: ~ 15-20 MeV
Top Quark Mass Results

\[m_{\text{top}} = 173.1 \pm 1.2 \text{ GeV}/c^2 \]

Dominant systematic uncertainties:

MC modelling and jet energy calibration for b-jets
Higgs Production at the Tevatron

- Dominant $gg \rightarrow H$
- Subdominant WH, ZH
Search for really small signal on top of difficult backgrounds:
- Peak in invariant mass of two b-jets not sufficient to discriminate
- Analyses based on advanced analysis techniques
 - Neural Networks, Boosted Decision trees, etc

Both collaborations have analyzed nearly 3 fb\(^{-1}\) in all 3 modes:
- WH → lνbb, ZH → lllbb, ZH → ννbb
Dibosons \rightarrow lvjj and vvjj

- Observation and Evidence:
 - Important milestones on road to low mass Higgs boson search

CDF RunII Preliminary

$>5.3\sigma$

4.4σ
Small signal on top of large (and uncertain) backgrounds

- Higgs mass reconstruction impossible due to 2 neutrinos
- Use advanced techniques (ANN etc.) to enhance S/B
Higgs Cross Section Limit

- $160 < m_H < 170$ GeV excluded at 95% C.L.
 - Note that the limit is $\sim 1\sigma$ better than expected
- For $m_H = 120$ GeV: $\sigma_{\text{limit}} / \sigma_{\text{SM}} = 2.8$
Indirectly: \(m_H < 163 \text{ GeV} @ 95\% \text{CL} \)
(caveat: is the measured top mass the pole mass?)

Directly: \(114 < m_H < 160 \text{ GeV} \) or \(m_H > 170 \text{ GeV} @ 95\% \text{CL} \)
(This all assumes that there is no new physics beyond the SM)
Beyond the Standard Model
Squarks and Gluinos

- Squark and Gluino production:
 - Signature: jets and E_T^{miss}
 - At Tevatron no long cascades to leptons expected:
 - Lepton veto applied
- Strong interaction \Rightarrow large production cross section
 - for $M(\tilde{g}) \approx 300$ GeV/c2:
 - 1000 event produced/ fb$^{-1}$
 - for $M(\tilde{g}) \approx 500$ GeV/c2:
 - 1 event produced/ fb$^{-1}$
 - Relatively little gain expected with more data
 - Need LHC!
- Analysis optimized depending on mass hierarchy

\[m(\tilde{q}) \gg m(\tilde{g}) \quad m(\tilde{q}) \approx m(\tilde{g}) \quad m(\tilde{q}) \ll m(\tilde{g}) \]
Supersymmetry Parameter Space

M(\tilde{g}) > 308 \text{ GeV}, M(\tilde{q}) > 379 \text{ GeV}

NB: up to 10 GeV differences depending on treatment of theoretical cross section uncertainties
3rd generation Squarks

- 3rd generation is special:
 - Masses of one can be very low due to large SM mass
 - Particularly at high $\tan\beta$

- Search for sbottom quarks from gluino decays
 - 2 b-jets and E_T^{miss}

\[m_{\tilde{b}_{1,2}}^2 = \frac{1}{2} (m_{\tilde{b}_L}^2 + m_{\tilde{b}_R}^2) \pm \frac{1}{2} \sqrt{(m_{\tilde{b}_L}^2 - m_{\tilde{b}_R}^2)^2 + 4m_{\tilde{b}}^2(A_b - \mu \tan \beta)^2} \]

Searches in stop sector also performed and no signal found
- Search for direct chargino-neutralino production decaying to leptons
- Data consistent with background expectations
 - Exceeds limit on chargino mass from LEP at low $\tan\beta$
 - rather model-dependent though
Many searches for new resonances
 – None found yet: limits are about 0.7-1 TeV
LHC Perspectives
First beam on September 10th 2008
 - Major incident in sector 34 9 days later
 - first collisions delayed until end of this year
 - LHC will be ready for beam again end of October
 - Energy per beam: 4-5 TeV
 - Run for about 9-12 months and get L\textasciitilde200 pb-1
Where the repairs are happening

- New pressure release ports fitted
- Upgrade of magnet protection system
- Cleaning of vacuum beam tube
- Dipole and quadrupole magnets replaced and electrical interconnections
- LHC ring
The LHC repairs in detail

1. 14 quadrupole magnets replaced
2. 39 dipole magnets replaced
3. 54 electrical interconnections fully repaired. 150 more needing only partial repairs
4. Over 4 km of vacuum beam tube cleaned
5. A new longitudinal restraining system is being fitted to 50 quadrupole magnets
6. Nearly 900 new helium pressure release ports are being installed around the machine
7. 6500 new detectors are being added to the magnet protection system, requiring 250 km of cables to be laid
Splice Resistance Measurements

- Sector 34 incident caused by splice connection having higher resistance than tolerable
 - Also now found in other magnets (up to 59 \(\mu\Omega\))
 - Danger in case of quench
- may limit beam energy to 4 TeV depending on what is found in other sectors
 - Will know in August
Cosmic Data Taking End of 2008

- After September incident
 - cosmic ray data taking of full detectors
 - Great operational experience
 - Allowed in-situ performance studies
Good performance of all systems in both ATLAS and CMS
- E.g. noise and energy scale in calorimeters
- E.g. alignment of trackers and muon spectrometers started and already ok for physics
LHC Physics Prospects

- Amazing prospects on longer term at $\sqrt{s}=14$ TeV, e.g.
 - Find or exclude SM Higgs boson over full mass range with >10 fb$^{-1}$
 - Probe SUSY up to 1.5 TeV already with 1 fb$^{-1}$
- Reduced potential with 200 pb$^{-1}$ at 10 TeV:
 - Higgs boson: too little data to compete with Tevatron
 - High Mass (Z', SUSY, ...): extend discovery reach beyond Tevatron

M. Schmaltz, BU
SUSY Search: Jets + E_T^{miss}

- Classic \bar{q} and \bar{g} search
 - ≥ 4 high E_T jets
 - Large E_T^{miss}
 - $M_{\text{eff}} = E_T^{\text{miss}} + \sum E_T^{\text{jet}}$

- Understanding of E_T^{miss} critical
 - Major progress during 2008 cosmics run
Discovery potential beyond Tevatron:
- \(\sqrt{s} \geq 8 \) TeV: requires \(L \geq 20 \) pb\(^{-1}\)
- With 1 fb\(^{-1}\) will probe masses up to 1.5 TeV
Resonance Search: \(Z'\)

- Early physics topic
 - Improve upon Tevatron with >20 pb\(^{-1}\)
 - Depends on muon spectrometer alignment
Conclusions and Outlook

- Tevatron, CDF and DØ are operating well
 - Tevatron delivered 7 fb\(^{-1}\) by now!
 - Running guaranteed until Fall 2010 (9.5 fb\(^{-1}\))

- Physics results cover broad range:
 - Higgs boson constraints at 95% CL:
 - Indirect (m\(_W\) and m\(_{\text{top}}\)): m\(_H\)\(<163\) GeV/c\(^2\)
 - Direct searches: m\(_H\)\(<160\) or \(>170\) GeV/c\(^2\)
 - Searches beyond the Standard Model
 - no sign of new physics yet: m(\(g\))\(>300\) GeV, m(Z’)\(>1\) TeV, ...

- LHC startup in 2008 successful
 - Unfortunately compromised by major incident shortly after start
 - Required major repairs of one sector and installation of additional components in other sectors
 - Restart expected for end of October 2009
 - Goal: take about 200 pb\(^{-1}\) with \(\sqrt{s}=8\)–10 TeV until end of 2010
 - Exceed discovery potential of Tevatron in high mass range
 - Meanwhile detectors have gained operational experience and improved their performance with cosmic rays
 - Hopefully Higgs boson and/or New Physics will be found soon!
More details in Parallel Sessions

- See parallel session talks:
 - LHC:
 - A. Barr, S. Krutelyov, R. Gnozalez-Suarez
 - Tevatron:
 - A. Garcia-Bellindo, A. Meyer, C. Hensel, A. Ruiz-Jimeno, M. Kreps