Physics Goals
Machine Conditions
Detector Changes
LHC and sLHC

- LHC is foremost a discovery machine
 - In ~2 years will take enough data (10 fb\(^{-1}\)) to discover SM Higgs or rule it out
 - After ~8 years will have ~700 fb\(^{-1}\), enough to discover SUSY to ~1 TeV, W'/Z' to ~5 TeV, many other possibilities

- But just what has been found?
 - Needs much more data
 - Measurement of many parameters
 - Deviation from SM values \(\Rightarrow\) New physics; needs high precision
 - SUSY spectroscopy
 - More data will also extend the discovery range to higher masses and rare processes

References:
- Michelangelo Mangano at SLHC Kick-off
Higgs found? Measure e.g. Triple Gauge Couplings

- SM fixes couplings; most general forms have 5 extra parameters possible.
- sLHC can significantly reduce error bars on most.
- Higgs self-coupling also much better measured at sLHC

\[\Delta \lambda_{HHH} = (\lambda - \lambda_{SM}) / \lambda_{SM} \]

- \[\lambda_\gamma \]
- \[\lambda_Z \]
- \[\Delta \kappa_\gamma \]
- \[\delta k_Z \]

<table>
<thead>
<tr>
<th>Coupling</th>
<th>100 fb-1</th>
<th>1000 fb-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_\gamma)</td>
<td>0.0014</td>
<td>0.0006</td>
</tr>
<tr>
<td>(\lambda_Z)</td>
<td>0.0028</td>
<td>0.0018</td>
</tr>
<tr>
<td>(\Delta \kappa_\gamma)</td>
<td>0.0340</td>
<td>0.0200</td>
</tr>
<tr>
<td>(\delta k_Z)</td>
<td>0.0400</td>
<td>0.0340</td>
</tr>
</tbody>
</table>
How many Higgs? sLHC boosts the region in which more than one can be observed. E.g. MSSM model:

- SUSY particles
 - Either already found at LHC, and sparticle spectroscopy at sLHC
 - Or extend mass range for discovery ~40% at sLHC
No Higgs?

- Then strong vector boson scattering needed ~ 1 TeV
- Low statistics at LHC (few events); clear signal at sLHC even for 1.5 TeV WZ or ZZ resonance
New Forces; \(W' \) and \(Z' \)

- Increased mass reach from higher statistics and tails of PDF
- 5 TeV reach at LHC \(\rightarrow \) 6 TeV at sLHC

If found, what force?

Peak shape and asymmetries (Dittmar et al) with high statistics can distinguish between models
Physics Requirements for Detectors at sLHC

- Detector performance needs to be maintained despite the pile-up!
 - High-mass (~TeV) can tolerate some degradation; low backgrounds
 - But WW scattering (Higgs couplings or vector boson fusion) needs forward jet reconstruction and central jet veto
 - Vertex, missing Et, pt resolution remain important, and efficiencies, for many channels of interest
 - Electron ID and muons for W/Z, W'/Z', and SUSY
Ramp up to nominal 10^{34} by 2012

Phase 1 starts with 6 – 8 month shutdown end 2012

- Peak luminosity 3×10^{34} cm$^{-2}$ s$^{-1}$ at end of phase 1

Phase 2 will start with an 18 month shutdown for detector changes at end of 2016

- Peak 10×10^{34} cm$^{-2}$ s$^{-1}$ in phase 2
- 3000 fb$^{-1}$ data each detector in phase 2
Schedule

- Machine evolution may differ from the given best estimate
 - More risk to downside
 - But also possibility things can go faster
 - ATLAS and CMS Inner trackers will need replacing 2016 or soon after and these are very long timescale projects
 - Work has started, and needed to
 - Detector developers, engineers etc. are available
 - Simulation experts less so, a challenge
- Aim to pursue detector development with end 2016 as target
 - If more time becomes available, of course we should benefit using more advances in detector technology
- Need experience of running detectors and seeing detector performance
- Need physics results
- Aim for Technical Proposals (with options) for detector upgrades in 2010 and tracker TDRs 2011 – or difficult to meet 2016
Detector Plans – Phase 1

- Limited time for installation – 6 to 8 months in 2012/13 shutdown
- Small increase in peak rate above previous estimates (2 → 3×10^{34})
- Total integrated luminosity similar to previous expectations ~700 fb⁻¹
 - Limited changes needed; some completion of staged items e.g. CMS muons
- Main changes are in pixels, where B-layers reach radiation limit and high rates cause lost hits
 - CMS hope to replace the whole pixel detector; at least the B-layer
 - ATLAS pixel takes ~ 1 year to replace B-layer
 - Instead ATLAS will insert a new B-layer inside the current detector, along with a new smaller diameter beam pipe, in 2012/13 shutdown
- TDAQ
 - Both experiments will continuously upgrade TDAQ to cope with rates and take advantage of new processing power
 - Both will look at topological triggers – combining different trigger elements, e.g. muon with no jet
 - Other ideas e.g. fast track finding (associative memory) at LVL2
Phase 1 changes - Pixels

- CMS investigate options from b-layer only to 4 layers instead of 3, 130 nm readout chips with DC-DC converters (twice as many modules as now)

- Can insert and connect in few days

- Atlas can maintain or improve vertexing inserting new B-layer:
 - Smaller b-layer radius 50 --> 37 mm; smaller pixels (400 --> 250 micron long) beats extra material
SiPM for CMS Tile Calorimeter

- Currently tower all added together – no possibility to allow for darkening of front layers
- Dynamic range of hybrid photo multipliers insufficient for muons and noise issues
- Replace with SiPM (avalanche photo diodes)
 - No noise
 - Big dynamic range
 - Keep fibres, can retrofit fast
 - More possibilities for segmentation
What are the conditions at Phase II/sLHC?

- 300 – 400 pile-up events at start of spill (unless luminosity levelling)
- Want to survive at least 3000 fb\(^{-1}\) data taking
- B-layer at 37 mm:
 - \(~30\) tracks per cm\(^{-2}\) per bunch crossing
 - Few 10s of MGray
 - \(>10^{16}\) 1 MeV n-equivalent non-ionising
Detector Changes for Phase 2

- Most of ATLAS and CMS will cope well at sLHC
 - Keep magnet systems, most parts of muon systems and calorimeters
 - But inner trackers in both experiments need complete replacement
 - Radiation damage limit will have been reached
 - Need to replace them even if no sLHC!
 - Higher rates cause dead time (e.g. ATLAS TRT)
 - Need finer granularity detectors for good pattern recognition
 - And parts (especially electronics) of all systems need upgrading, even if most of the basic detector parts remain
Inner detectors - B-layers

- Most challenging for track density, radiation damage, SEU
- Highest requirements: efficiency, coverage, position resolution
- Sensors: current planar-Si sensor technology is not rad-hard enough to survive to end of sLHC. Either new sensors, or replace every few years
 - 3D silicon, thin silicon, diamond, MPGD (Gossip) as alternatives
- Smaller beampipes --> b-layer closer to beam
Pixel Detectors

- Read-out architecture and front-end chips under development
 - 130 nm; low power; minimum pixel length; high data rates
- High power levels -> look at new cooling, including CO2
- Lighter mass supports and services?
- Cheaper production – more pixels?
New Strips Detectors

- **Switch to n-in-p sensors**
 - At high dose, may not achieve full depletion
 - Still have readout junction in the depleted region, no big signal loss
 - Prototype sensors reach 1000 V after irradiation -> good charge collection efficiency

- **Short strips (~25 mm) at inner region for lower occupancy or strixels**

- **Mechanics and assembly**
 - Low radiation length
 - Rapid installation: insert complete ID's (new for ATLAS)

- **Powering:** Serial or DC-DC *must*
 - High speed, low power, low mass data transfer
Electromagnetic Calorimeters

- Most regions of both experiments perform very well at sLHC
 - Optimise signal processing for higher pile-up
 - Some CMS crystals and VPT may darken as function of integrated luminosity, starting from high eta regions inwards
 - Difficult to access

- ATLAS forward calorimeter may suffer a number of problems:
 - Boiling of LAr, ion build up between electrodes, voltage drop over HV resistor
 - Studies underway; If these show action is needed, two solutions considered:
 - Warm calorimeter in front of current calorimeter
 - Open cryostat, insert complete new FCAL with smaller gaps and more cooling
Hadronic Calorimeters

- Atlas tiles, fibres, PM: expected to survive
 - Small decrease in performance after 7 years LHC running
 - Even at the end of sLHC running they will be working fine - though worst regions may have significantly less light
 - So do not expect major detector parts to be changed

- ATLAS Readout Electronics: rad hardness, maintenance, trigger needs - all benefit from new readout

- Power supplies – rad hardness and repairability issues so replacement plans
Most of hadron cal is fine especially with SiPM

Forward region suffers: few towers blacked by sLHC (tower 1 \(\sim 4 \% \) of original light output; tower 2 \(\sim 23\% \))

Also, machine magnets ("D0") block forward calorimetry
Muon Systems

- CMS has a lot of shielding, rate probably OK for current chambers
 - Need to see backgrounds to confirm; possibly $\eta > 2$ need changing, or limit trigger region to below this
 - New readout electronics? FPGA not rad hard enough
- ATLAS air core toroids have higher backgrounds; need to replace forward chambers (CSCs mainly) at nominal background.
 - Very important to measure actual background to see how much of “safety factor 5” is used up to see if significantly more needs replacing
- Both experiments are looking into improved shielding
 - Difficult: current design is highly optimised
 - Other possibility is to develop single chambers to do both triggering and precision read-out: thinner chambers leave more space for shielding
 - TGC's or Micromegas for ATLAS
- Depending on backgrounds, either minimal or very large fraction of Atlas muon system needs replacing, unless backgrounds can be reduced (in relation to luminosity).

- Both Atlas and CMS have to wait for data.
A beryllium beampipe

A beryllium beampipe is also the only way of significantly reducing the background in the muon spectrometer.

- All-Be beam pipe reduces muon BG considerably
- Expensive beampipe, but much cheaper than new muon chambers
- CMS consider more shielding to $\eta = 2$
- Add borated polythene; better shielding of PMTs
Triggers

- In both experiments the goal is to maintain trigger rates.
 - Still challenging! You have to reject 10 times more events at LVL1, and process much more data at LVL2 (pile-up --> bigger events)

- Continuous process of replacing and increasing processor hardware

- Consider increasing level-1 latency: the time available to actually run the trigger increases rapidly as LVL1 latency increases
Track triggers at Level-1

- Muon trigger rate ~constant above ~20-30 GeV/C; both ATLAS and CMS
- Cannot improve muon situation at CMS; difficult at ATLAS (new muon trigger chamber layer with higher resolution?)
- Several ideas CMS and ATLAS to investigate inner tracker triggers
 - both P_t and vertex displacement triggers

CMS muon trigger rate

High momentum tracks are straighter so pixels line up

Pairs of stacked layers can give a P_T measurement
Summary

- There is every hope there will be a rich field of physics to explore at the LHC into the 20's
 - Need LHC results
- The LHC expects
 - Phase-1 upgrade 2012 leading to $3 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ peak luminosity
 - Phase-2 upgrade starts end 2016 leading to $10 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ peak luminosity
- Atlas and CMS require major upgrades (even without Phase-2) installed in long shutdown 2017
- R&D underway to meet the challenges
 - Need experience with current detectors

This project has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under the Grant Agreement n°212114
If Higgs Found

- Measure (ratios of) BR to less common states
- Deviations from SM → new physics
- Some are systematics-limited already at LHC, but significant improvement in others

![Graph showing Higgs Mass (GeV) vs Fractional Error with data points for ATLAS + CMS at different luminosities.]
Other track trigger ideas...

A Romaniuk et al – micromegas using InGrid on pixel readout, 17 mm drift gap at outer radius of inner tracker
Can give good Pt for trigger

4 particles per cm²

Min bias from the same bunch

Min bias from -2 bunches

High P_T track

Min bias from +2 bunches
ID Layouts: More granularity

- **CMS**
 - More layers; reduction under investigation

- **Atlas**
 - 4 pixels
 - 3 double SS
 - 2 double LS